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ABSTRACT

STRUCTURAL SCENE ANALYSIS OF REMOTELY
SENSED IMAGES USING GRAPH MINING

Bahadır Özdemir

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Selim Aksoy

July, 2010

The need for intelligent systems capable of automatic content extraction and

classification in remote sensing image datasets, has been constantly increasing

due to the advances in the satellite technology and the availability of detailed

images with a wide coverage of the Earth. Increasing details in very high spatial

resolution images obtained from new generation sensors have enabled new ap-

plications but also introduced new challenges for object recognition. Contextual

information about the image structures has the potential of improving individual

object detection. Therefore, identifying the image regions which are intrinsically

heterogeneous is an alternative way for high-level understanding of the image

content. These regions, also known as compound structures, are comprised of

primitive objects of many diverse types. Popular representations such as the

bag-of-words model use primitive object parts extracted using local operators but

cannot capture their structure because of the lack of spatial information. Hence,

the detection of compound structures necessitates new image representations that

involve joint modeling of spectral, spatial and structural information.

We propose an image representation that combines the representational power

of graphs with the efficiency of the bag-of-words representation. The proposed

method has three parts. In the first part, every image in the dataset is trans-

formed into a graph structure using the local image features and their spatial

relationships. The transformation method first detects the local patches of inter-

est using maximally stable extremal regions obtained by gray level thresholding.

Next, these patches are quantized to form a codebook of local information and a

graph is constructed for each image by representing the patches as the graph nodes

and connecting them with edges obtained using Voronoi tessellations. Transform-

ing images to graphs provides an abstraction level and the remaining operations
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for the classification are made on graphs. The second part of the proposed method

is a graph mining algorithm which finds a set of most important subgraphs for the

classification of image graphs. The graph mining algorithm we propose first finds

the frequent subgraphs for each class, then selects the most discriminative ones

by quantifying the correlations between the subgraphs and the classes in terms of

the within-class occurrence distributions of the subgraphs; and finally reduces the

set size by selecting the most representative ones by considering the redundancy

between the subgraphs. After mining the set of subgraphs, each image graph

is represented by a histogram vector of this set where each component in the

histogram stores the number of occurrences of a particular subgraph in the im-

age. The subgraph histogram representation enables classifying the image graphs

using statistical classifiers. The last part of the method involves model learning

from labeled data. We use support vector machines (SVM) for classifying images

into semantic scene types. In addition, the themes distributed among the im-

ages are discovered using the latent Dirichlet allocation (LDA) model trained on

the same data. By this way, the images which have heterogeneous content from

different scene types can be represented in terms of a theme distribution vector.

This representation enables further classification of images by theme analysis.

The experiments using an Ikonos image of Antalya show the effectiveness of

the proposed representation in classification of complex scene types. The SVM

model achieved a promising classification accuracy on the images cut from the

Antalya image for the eight high-level semantic classes. Furthermore, the LDA

model discovered interesting themes in the whole satellite image.

Keywords: Graph-based scene analysis, graph mining, scene understanding, re-

mote sensing image analysis.
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Uydu teknolojisindeki gelişmeler ve Dünya’nın geniş bir yüzeyini kapsayan

detaylı görüntülerin mevcut olması, uydu görüntülerinde otomatik içerik çıkarma

ve sınıflandırma yapabilen akıllı sistemlere duyulan ihtiyacı her geçen gün

arttırmaktadır. Yeni nesil sensörlerden alınan çok yüksek uzamsal çözünürlüklü

görüntülerdeki artan detaylar yeni uygulamaları mümkün kılmakla birlikte temel

nesnelerin sezimini zorlaştırmaktadır. Görüntü yapıları hakkındaki bağlamsal

bilgiler birbirinden bağımsız nesnelerin sezimini geliştirme potansiyeline sahiptir.

Bu nedenle, özünde heterojen olan görüntü bölgelerinin tanımlanması, görüntü

içeriğini anlamak için alternatif bir yoldur. Bileşik yapılar olarak da bilinen

bu bölgeler birçok farklı türdeki temel nesnelerden oluşmaktadır. Kelimeler-

torbası gibi popüler gösterimler, yerel operatörler kullanılarak çıkarılan temel

nesne parçalarını kullanır fakat mekansal bilgi eksikliği nedeniyle onların yapısını

tutamaz. Dolayısıyla, bileşik yapıların sezimi spektral, uzaysal ve yapısal bilgi-

lerin ortak modellenmesini içeren yeni görüntü gösterimlerini zorunlu kılar.

Biz, çizgelerin gösterim gücü ile kelimeler-torbası gösteriminin verimliliğini

birleştiren bir görüntü gösterimi öneriyoruz. Önerilen yöntem üç bölümden

oluşmaktadır. İlk bölümde, veri kümesindeki her bir görüntü yerel görüntü

özellikleri ve onların uzamsal ilişkileri kullanılarak çizge yapısına dönüştürülür.

Dönüştürme yöntemi ilk olarak gri seviye eşiklemesi ile elde edilen en kararlı uç

bölgelerden, ilgili yerel yamaları tespit eder. Sonra, bu yamalar bir yerel bilgi

çizelgesi oluşturmak için nicelendirilir, ve yamaları çizge düğümü gibi göstererek

ve onları Voronoi mozaiğinden elde edilen kenarlarla birleştirerek her bir görüntü

için bir çizge inşa edilir. Görüntülerin çizgelere dönüştürülmesi bir soyut-

lama düzeyi sağlar ve sınıflandırma için geriye kalan işlemler çizgeler üzerinde

yapılır. Önerilen yöntemin ikinci bölümü görüntü çizgelerinin sınıflandırılması
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için en önemli altçizgelerin kümesini seçen bir çizge madenciliği algorit-

masıdır. Önerdiğimiz çizge madenciliği algoritması ilk olarak her sınıf için

sık görülen altçizgeleri bulur, sonra sınıf içinde görülme dağılımları açısından

altçizgeler ve sınıflar arasındaki bağıntı miktarları ölçülerek en ayırt edici olan-

ları seçer; ve son olarak altçizgeler arasındaki fazlalığı dikkate alarak en iyi

temsil edenlerin seçmesiyle küme boyutunu küçültür. Altçizge kümesi maden-

ciliğinden sonra her bir görüntü çizgesi, her bir bileşeninin bu kümenin belli

bir altçizgesinin görüntüde görülme sayısını tuttuğu bir histogram vektörü

ile gösterilir. Altçizge histogram gösterimi görüntü çizgelerinin istatistiksel

sınıflandırıcılar kullanılarak sınıflandırılmasını mümkün kılar. Yöntemin son

bölümü etiketli verilerinden model öğrenilmesini içerir. Görüntülerin anlam-

sal sahne türlerine sınıflandırılması için destek vektör makineleri (DVM) kul-

lanıyoruz. Ek olarak, görüntüler üzerine dağılan temalar, aynı veriler üzerinde

öğretilen gizli Dirichlet tahsisi (GDT) modeli kullanılarak keşfedilir. Bu sayede,

farklı sahne türlerinden heterojen bir içeriğe sahip görüntüler bir tema dağılım

vektörü olarak gösterilebilirler. Bu gösterim tema analizi ile görüntülerin daha

ileri düzeyde sınıflandırılmasını sağlar.

Antalya’nın bir Ikonos görüntüsü üzerindeki deneyler önerilen gösterimin

karmaşık sahne türlerinin sınıflandırılmasındaki etkinliğini göstermektedir. DVM

modeli Antalya görüntüsünden kesilen görüntülerde sekiz üst düzey anlamsal sınıf

için umut verici sınıflandırma doğruluğu elde etti. Ayrıca, GDT modeli tüm uydu

görüntüsünde ilginç temalar keşfetti.

Anahtar sözcükler : Çizge tabanlı sahne analizi, çizge madenciliği, sahne anlayışı,

uydu görüntüsü analizi.
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Chapter 1

Introduction

Never use epigraphs, they kill the mystery in the work!

“The Black Book” – Orhan Pamuk

1.1 Overview

The amount of high-resolution satellite images is constantly increasing every day.

Huge amount of information leads the requirement of automatic processing of

remote sensing data by intelligent systems. Such systems usually perform image

content extraction, classification and content-based retrieval in several application

areas such as agriculture, ecology and urban planning. Very high resolution im-

ages become available by the advances in the satellite technology and processing

of such images becomes feasible by the increasing computing power with the help

of improvements in processor technology and parallel processing. This availability

has enabled the study of multi-modal, multi-spectral, multi-resolution and multi-

temporal data sets for monitoring purposes such as urban land use monitoring

and management, geometric information system (GIS) and mapping, environ-

mental change, site suitability, agricultural and ecological studies [2]. However, it

also makes the problem of developing such intelligent systems more challenging

because of the increased complexity.

1



CHAPTER 1. INTRODUCTION 2

Increasing details in very high spatial resolution images obtained from new

generation sensors have been the main cause of the rising popularity of object-

based approaches against traditional pixel-based approaches. Object-based ap-

proaches are aiming to identify primitive objects such as buildings and roads.

Unfortunately, most algorithms cannot manage to detect such small objects in

a very detailed image because segmentation algorithms usually fail to produce

homogeneous regions corresponding to primitive structures. Contextual informa-

tion about the image structures has the potential of improving individual object

detection. Consequently, finding compound structures that correspond to high-

level structures such as residential areas, forests, agricultural areas has become an

alternative in image classification and high-level partitioning in the recent years

because compound structures enable high-level understanding of image regions

which are intrinsically heterogeneous [47]. Compound structures can be detected

using local image features extracted from output of a segmentation algorithm or

from interest points/regions. However, the detection of objects in such a detailed

image is a difficult task. Therefore, some methods use textural analysis in lower

resolution for detection of compound structures [42] or for detection/segmentation

in high spatial resolution [19, 39]. In this thesis, we focus on representation of

images by local image features with their spatial relationships and processing this

representation model to detect compound structures in high spatial resolution.

1.2 Problem Definition

Pattern classification algorithms usually use one of the two traditional pattern

recognition approaches: Statistical pattern recognition and syntactical/structural

pattern recognition. Statistical approach uses feature vectors for object represen-

tation and generative or discriminative methods for modeling patterns in a vector

space. The main advantage of this approach is available powerful algorithmic

tools. On the other hand, structural approach uses strings or graphs for object

representation. The main advantage of structural approach is the higher rep-

resentation power and variable representation size. Both approaches have been

used for detecting compound structures and image classification.



CHAPTER 1. INTRODUCTION 3

One of the statistical methods used for image classification is the bag-of-words

model, which was originally developed for document analysis, adapted for images

in [28]. Histogram of visual words obtained using a codebook constructed by

quantizing local image patches has been a very popular representation for image

classification in the recent years. This representation has been shown to give suc-

cessful results for different image sets; however, a commonly accepted drawback is

its disregarding of the spatial relationships among the individual patches as these

relationships become crucial as contextual information for the understanding of

complex scenes.

Structural approach used in image classification is aiming to represent images

by graphs. Graphs provide powerful models where the nodes can store the local

content and the edges can encode the spatial information. However, their use

for image classification has been limited due to difficulties in translating complex

image content to graph representation and inefficiencies in comparison of these

graphs for classification. For example, the graph edit distance works well for

matching relatively small graphs [37] but it can become quite restrictive for very

detailed image content with a large number of nodes and edges.

We propose an intermediate representation that combines the representational

power of graphs with the efficiency of the bag-of-words representation. The pro-

posed method has three stages: transforming images into a graph representation,

selecting the best subgraphs using a graph mining algorithm, and learning a

model for each class to be used for classification. Figure 1.1 shows the overall

flowchart of the algorithm.

Transforming images to graphs provides an abstraction level for images. Re-

maining operations for classification are made on graphs. Therefore, graphs trans-

formed from images should contain sufficient information about the image content

and spatial relationships. We describe a method for transforming the scene con-

tent and the associated spatial information of that scene into graph data. The

method, which will be described in detail in Chapter 3, produces promising results

on an Ikonos image of Antalya, Turkey (see Chapter 6).

The proposed approach represents each graph with a histogram of subgraphs
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Figure 1.1: Overall flowchart of the algorithm
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selected by a graph mining algorithm where the subgraphs encode the local

patches and their spatial arrangements. The subgraphs are used to avoid the

need of identifying a fixed arbitrary complexity (in terms of the number of nodes)

and to require that they have a certain amount of support in different images in

the data set. Partitioning remote sensing data into tiles usually produces im-

ages which contain heterogeneous regions of different classes. Some compound

structures are naturally found near other structures. For example, orchards and

greenhouses are usually detected near villages. Therefore, subgraphs selected by

the algorithm should handle heterogeneous within-class content in an image set.

A subgraph should also correspond to a structure particular to that class for clas-

sification purposes. Consequently, we propose a graph mining algorithm, where

details can be found in Chapter 4, which tries to find a set of most important

subgraphs considering frequency, correlation with classes and redundancy. Each

image graph is represented by a histogram vector of this set in order to benefit

from the advantages of statistical pattern recognition approach.

Finally, images represented by histogram vectors are classified in the vector

space by traditional statistical classifiers. We employ support vector machines

(SVM) for classifying images. In addition, topics/themes are discovered using

latent probabilistic models such as latent Dirichlet allocation (LDA) that can

be used for further classification of images for heterogeneous content. We show

that good results for classification of images cut from large satellite scenes can

be obtained for eight high-level semantic classes using support vector machines

together with subgraph selection.

1.3 Data Set

The experiments are performed on an Ikonos image of Antalya, Turkey, consisting

of a 12511× 14204 pixel panchromatic band with 1m spatial resolution and four

3128× 3551 pixel multi-spectral bands with 4m spatial resolution. In the experi-

ments we use the panchromatic band and the pan-sharpened multi-spectral image

produced by an image fusion method from visible multi-spectral bands and the
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panchromatic band. The produced image approximates 1m spatial resolution in

visible bands. We use the Antalya image because of its diverse content including

several types of complex high-level structures such as dense and sparse residen-

tial areas with large and small buildings as well as fields and forests. The whole

image was partitioned into 250 × 250 pixel tiles and these images were grouped

into eight semantic classes, namely, (a) dense residential areas with large build-

ings, (b) dense residential areas with small buildings, (c) dense residential areas

with trees, (d) sparse residential areas, (e) greenhouses, (f) orchards, (g) forests,

and (h) fields. Only relatively homogeneous tiles, totally 585 images, are used in

model learning and classification. The image and sample regions from every class

are demonstrated in Figure 1.2.

1.4 Summary of Contributions

In this thesis, the goal is to correctly classify a given unknown image according

to the models learned from training data for each class. Our framework for this

aim has three parts and each part contains significant contributions.

The main contribution in the first part is a graph representation method

for images. Although graphs offer higher representation power, their usage in

computer vision has been below their usage in other fields. The primary rea-

son for this issue is that images are not intrinsically in graph structure such as

chemical compounds, program flows and social/computer networks. These data

types come with their intrinsic graph structures and are perfectly suitable for

structural approaches. The problem with graph representation of images is the

difficulty of transforming image contents to graph structure. Most of the methods

which construct graphs from images has used image segmentation algorithms so

far [32, 23, 1, 22, 4]. In such methods, the regions in the output of segmenta-

tion usually correspond to graph nodes with labels determined by the features

extracted from these regions whereas the edges encode the relationships between

the regions. Unfortunately, precise segmentation of high spatial resolution satel-

lite images as in Figure 1.2 is quite hard to obtain and this affects the performance
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Figure 1.2: An Ikonos image of Antalya, and some compound structures of inter-
est are zoomed in. The classes are (in clockwise order): Sparse residential areas,
orchards, greenhouses, fields, forests, dense residential areas with small buildings,
dense residential areas with trees, and dense residential areas with large buildings.
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of graph representation negatively. Alternatively, we use regions of interests and

their spatial relationships to transform image content into graph representation.

Identifying only important regions in an image instead of whole image can supply

sufficient information about the image content. First, local patches of interest are

detected using maximally stable extremal regions obtained by gray level thresh-

olding. We extract several features from these regions and their surroundings for

better understanding of the regions. Next, these patches are quantized to form

a codebook of local information, and a graph for each image is constructed by

representing these patches as the graph nodes. The spatial relationships between

the patches are identified using Voronoi tessellation and neighboring nodes are

connected with edges. The abstraction level provided by the graph representation

enables us to apply the same classification method on images coming from differ-

ent sources like another satellite with different spatial resolution. For example, a

QuickBird image can be classified in graph representation by a system trained on

graphs constructed from Ikonos images as long as the node labels are compatible.

The second part proposes a graph mining algorithm to select the most im-

portant subgraphs for classification of graphs transformed from images. The

mining algorithm we propose is a combination of three graph mining algorithms

connected in series; in other words the output of one algorithm is the input of

another one. The first algorithm seeks subgraphs frequently seen in a graph set.

We use one of the popular algorithms in the graph mining literature for this

purpose. Frequency criterion ensures the importance of subgraphs in the graph

set. The most important contribution of this part is the second mining algorithm

for finding correlated subgraphs which are frequently found in only one class of

graphs and not in others. The available algorithms in the literature for corre-

lated graph mining use a simple support definition which ignores the frequency

of subgraph in a single graph and represents the support of a subgraph in a single

graph as a binary relation of existence or absence [10, 34, 33]. We propose a novel

algorithm where the frequency of subgraphs in a single graph are considered in

the calculation of subgraph correlation (details are in Section 4.3). This method

enhances classification performance considerably when images of a class cannot

be fully homogeneous such as greenhouses seen in Figure 1.2. In such cases, this
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method seeks subgraphs which are common among examples of that class, i.e.

particular to that class. Final mining algorithm removes redundant subgraphs

to avoid curse of dimensionality and selects the most significant subgraphs. The

second and third mining algorithms work like a filter. They allow some subgraphs

to pass to the next algorithm if they satisfy the criteria of the algorithms. The

final set of subgraphs satisfying all criteria is used for representing a graph as

a histogram vector where each component of the vector is the frequency of the

corresponding subgraph in the given graph.

The third and last part is the classification of images using their vector repre-

sentations by traditional classifiers like support vector machines. Addition to this,

we use latent Dirichlet allocation to discover topics (themes) and their distribu-

tion in the image. This an important contribution because finding a homogeneous

tile of a satellite image becomes harder when the tile size increases. Experimental

results of the proposed methods are given in Chapter 6.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents an overview of

related works in the literature. Chapter 3 introduces the method of transforming

an image into graph representation. In Chapter 4, we first give a brief introduc-

tion to graph mining and then describe our graph mining algorithm. Chapter 5

explains learning models used for classification. Experimental results are given

in Chapter 6, and Chapter 7 provides conclusions and future work.



Chapter 2

Literature Review

The knowledge and learning that we have, is, at most,

but little compared with that of which we are ignorant.

Plato

In this chapter, we give the review of the previous studies on image classifi-

cation using the bag-of-words model or the graph representation. The methods

are divided into two sections according to their image representation. In the first

section, we describe some image classification methods which are based on the

bag-of-words model but also consider the spatial information of visual words. The

second section describes the graph representation of images in the literature and

their applications to image classification and retrieval.

2.1 Classification with Visual Words

The visual word concept is introduced in [28] as an image patch represented by

a codeword from a large vocabulary of codewords. The vocabulary called code-

book is formed by quantizing the image patches. Hence, an image is represented

with a histogram of visual words. This analogy enables the usage of generative

10
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probabilistic models of text corpora such pLSI and LDA in computer vision ap-

plications. These probabilistic models are based on the bag-of-words assumption

[7], the exchangeability of visual words, that the location of patches in an image

can be neglected. According to a recent survey [24], the bag-of-words model has

been extended by weighting scheme, stop word removal, feature selection, spa-

tial information and visual bi-gram. In relation to our study, we describe the

extension methods which are using the spatial information and/or bi-gram of the

visual words.

In [26], Lazebnik et al. add geometric correspondences to visual words by par-

titioning the image into increasingly sub-regions and computing the histograms of

local features found inside each subregion. In [29], Li et al. propose the contextual

bag-of-words representation to model two kinds of typical contextual relations be-

tween local patches, i.e., a semantic conceptual relation and a spatial neighboring

relation. For the semantic conceptual relation, visual words are grouped on multi-

ple semantic levels with respect to the similarity of the class distribution induced

by the patches. To explore the spatial neighboring relation, the algorithm uses

the visual n-gram approach. According to Yuan et al. [46], the clustering of

primitive visual features tends to result in synonymous and polysemous visual

words that bring large uncertainties and ambiguities in the representation. To

overcome these problems, they propose a method which generates a higher-level

lexicon, i.e. visual phrase lexicon, where a visual phrase is a meaningful spatially

co-occurrent pattern of visual words. The method employs several data mining

techniques and pattern summarization, with modifications to fit the image data.

2.2 Classification with Graph Representation

In this section, we give some previous works which use graph structure for image

representation especially for classification and indexing/retrieval. An attributed

relational graph (ARG) is a graph with attributes (also called labels or weights)

on its nodes and/or edges. In computer vision applications, they are usually cre-

ated from the output of a segmentation algorithm where each segment is denoted
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by a node, and the edges are used to reflect the adjacent relations among the

segments. In [23] ARGs are used to find the common pattern of the input images

by finding the maximal common subgraph in the ARGs. In [1], Aksoy described

a hierarchical approach for the content modeling and retrieval of satellite images

using ARGs that combine region class information and spatial arrangements. The

retrieval operation uses the graph edit distance [32] as the dissimilarity measure

between two ARGs. Harchaoui and Bach propose graph kernels for supervised

classification of image graphs constructed in a similar way from the morphological

segmentation of images [21]. Another graph type used for image representation

is hypergraphs where each edge is a subset of the set of nodes for modeling the

higher-order relations between nodes [5]. Bunke et al. use hypergraphs to rep-

resent fingerprint images and classify those graphs using a hypergraph matching

algorithm [11]. Unlike previous methods which construct image graph from the

output of segmentation, in [20] Gao et al. construct graphs from corner points

and Delaunay triangulation for the images of real world objects in black back-

ground. They cluster and classify image graphs by computing the graph edit

distance between pairwise graphs.

Some methods transform the graphs constructed from images into feature

vector and classify images in the vector space by statistical algorithms. These

algorithm can be divided into two groups. In the first group of algorithm, each

graph is transformed into a vector such that each of the components corresponds

to the distance of the input graph to a predefined reference graph set. The studies

[37] and [12] employ this approach for the datasets of symbol/letter images and

fingerprint images using the Lipschitz Embedding [9] and the dissimilarity space

representation [36], respectively. In the second group of algorithms, each graph is

represented by a frequency vector of a subgraph set where the ith component is

the number of occurrences of the ithe subgraph in the input graph. The subgraph

set is found by a graph mining algorithm for some criteria like frequency. A set

of subgraphs found by the frequent subgraph mining of region-adjacency graphs

is used for image indexing [22] and for clustering document images [4]. In [35],

Nowozin et al. use weighted substructure mining which is combination of graph
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mining and the boosting algorithm in order to classify images. In graph construc-

tion, each interest point is represented by one vertex and its descriptor becomes

the corresponding vertex label and all vertices are connected by undirected edges

with labels determined by the distance between two interest points.



Chapter 3

Transforming Images to Graphs

One morning, when Gregor Samsa woke from troubled dreams,

he found himself transformed in his bed into a horrible vermin.

“The Metamorphosis” – Franz Kafka

The first step of the algorithm is transforming every image to a graph struc-

ture as seen in Figure 1.1. Local image features and the relationships between

them are encoded in the graph representation. In this chapter, we focus on this

transformation process. Figure 3.1 shows the details for a sample image. First, lo-

cal patches of interest in an image are detected using maximally stable extremal

regions (MSER) obtained by gray level thresholding. Next, these patches are

quantized to form a codebook of local information, and a graph for each image

is constructed by representing these patches as the graph nodes and connecting

them with edges obtained using Voronoi tessellations. The details of each step

are explained in the following sections.

3.1 Finding Regions of Interest

The maximally stable extremal regions enable us to model local image content

without the need for a precise segmentation that can be quite hard for high spatial

14
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resolution satellite images. In the following Section 3.1.1 the MSER algorithm

is briefly described. The effects of MSER parameters for detecting regions of

interest and different types of regions used in the algorithm are explained in

Section 3.1.2.

3.1.1 Maximally Stable Extremal Regions

In this section, we introduce the Maximally Stable Extremal Regions (MSER),

a new type of image elements proposed by Matas et al. in [31]. The regions

are selected according to their extremal property of the intensity function in the

region and on its outer boundary. The formal definition of the MSER concept

and the necessary auxiliary definitions are given below.

Definition 3.1 (Maximally Stable Extremal Regions, [31]).

Image I is a mapping I : D ⊂ Z2 → S. Extremal regions are well defined on

images if:

1. S is totally ordered, i.e. reflexive, antisymmetric and transitive binary

relation ≤ exists. Extremal regions can be defined on S = {0, 1, . . . , 255}
or real-valued images (S = R).

2. An adjacency relation A ⊂ D × D is defined. For example,

4-neighborhoods are used; p, q ∈ D are adjacent (pAq) iff
∑d

i=1 |pi−qi| ≤ 1.

Region Q is a contiguous subset of D, i.e. for each p, q ∈ Q there is a sequence

p, a1, a2, . . . , an, q and pAa1, aiAai+1, anAq.

(Outer) Region Boundary ∂Q = {q ∈ D \ Q | ∃p ∈ Q : qAp}, i.e. the

boundary ∂Q of Q is the set of pixels adjacent to at least one pixel of Q but not

belonging to Q.

Extremal Region Q ⊂ D is a region such that either for all p ∈ Q, q ∈ ∂Q :

I(p) > I(q) (maximum intensity region) or p ∈ Q, q ∈ ∂Q : I(p) < I(q) (minimum

intensity region).
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Maximally Stable Extremal Region Let Q1, . . . , Qi−1, Qi, . . . be a sequence

of nested extremal regions, i.e. Qi ⊂ Qi+1. Extremal region Qi∗ is maximally

stable iff q(i) = |Qi+∆ \ Qi−∆| / |Qi| has a local minimum at i∗. ∆ ∈ S is a

parameter of the method.

The MSER algorithm is similar to the watershed algorithm except their out-

puts. In watershed computation, we deal with only the thresholds where regions

merge, so resultant regions are highly unstable. In MSER detection, we seek a

range of thresholds where the size of regions are effectively unchanged. Since

every extremal region is a connected component of a thresholded image, all pos-

sible thresholds are applied to image and the stability of extremal regions are

evaluated to find MSERs.

As given in the formal definition 3.1 the intensity of extremal regions can be

less or greater than its boundary. We prefer calling dark MSER and bright MSER

for minimum intensity MSER and maximum intensity MSER, respectively. The

algorithm is generally implemented to detect dark MSERs and the intensity of

input image is inverted to detect bright MSERs.

In our study, we use the VLFeat implementation of the MSER algorithm

[43]. This implementation provides a rotation-invariant region descriptor and

additional parameters which offer extra control over selection of MSERs. These

parameters are related to area, variation (stability) and the diversity of extremal

regions.

Let Qi be an extremal region at the threshold level i. The following tests are

performed for every MSER:

� Area: exclude too small or too big MSERs, a− ≤ |Qi| ≤ a+.

� Variation: exclude too unstable MSERs, v(Qi) < v+ where VLFeat imple-

mentation differently uses stability score as v(Qi) = |Qi+∆ \Qi| / |Qi|.

� Diversity : remove duplicated MSERs, for any MSER Qi find the parent
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MSER Qj and check if |Qj \Qi| / |Qj| < d+ where Qj is the parent of Qi iff

Qi ⊂ Qj for i ≤ j ≤ i+ ∆.

We denote MSER parameter set as Ω = (∆, a−, a+, v+, d+). These parameters

are used to eliminate less important extremal regions, i.e. too small or too big

regions. The stability criterion is adjusted by parameters both ∆ and v+. The

graph representation should encode both local image features and their spatial

relationships correctly. Therefore, regions of interests should not share any pixel

like in segmentation to transform planar relationships between regions. However,

multiple thresholds may yield stable extremal regions for some parts of the image

and the output is nested subset regions [31]. In this study, we always set d+ = 0

to prevent overlapping extremal regions (actually one covers another).

Ellipsoids

MSERs have arbitrary shapes as seen in Figures 3.2(b) and 3.2(c) for given

input image in Figure 3.2(a). Therefore, many implementations return extremal

regions as a set of ellipsoids fitted to actual regions. Ellipsoids are represented

with two parameters: mean vector and covariance matrix of the pixels composing

the region. The parameters (µ,Σ) of extremal region Q are computed as

µ =
1

|Q|
∑
x∈Q

x, Σ =
1

|Q|
∑
x∈Q

(x− µ)(x− µ)> (3.1)

where the pixel coordinate x = (x1, . . . , xn)> uses the standard index order and

ranges. The MSER algorithm can also be applied to volumetric images; however,

in this study we only deal with 2D grayscale images (n = 2). Thus, µ has two

components and Σ has three independent components because covariance matrix

is a symmetric positive definite matrix. Ellipses fitted to MSERs in Figures 3.2(b)

and 3.2(c) are drawn in Figures 3.2(d) and 3.2(e), respectively. The ellipses are

drawn at (x− µ)>Σ−1(x− µ) = 1. ∗

∗The quantity r2 = (x−µ)>Σ−1(x−µ) is called the squared Mahalanobis distance from x
to µ.
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(a) input image

(b) dark MSERs (c) bright MSERs

(d) ellipses fitted to dark MSERs (e) ellipses fitted to bright MSERs

Figure 3.2: A given input image dark and bright MSERs, and ellipses fitted to
them for parameters Ω = (∆, a−, a+, v+, d+) = (10, 60, 5000, 0.4, 1).
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3.1.2 Types of Interest Regions

To handle all regions of interest by a single global parameter set is hard to obtain

for an image set including different complex scene types. For example, extremal

regions observed in urban areas are usually highly stable while such an observation

in fields is less possible. We define two parameter sets with different stability

criteria, Ωhigh and Ωlow, to detect extremal regions such as in both urban areas

and fields. In addition, it allows us to group extremal regions according to their

stability scores. Applying the MSER algorithm with these parameters on both

the intensity image (for dark MSERs) and on the inverted image (for bright

MSER) results in four different region groups as:

� Highly stable dark MSERs (stable dark)

� Highly stable bright MSERs (stable bright)

� Less stable dark MSERs (unstable dark)

� Less stable bright MSERs (unstable bright)

Due to the definition of MSER, less stable MSERs cover highly stable ones.

Therefore, we use restrictions on less stable ones. The set definitions of these four

groups are given by

stable dark(I) = {R |R ⊂ I ∧ R is an MSER satisfying Ωhigh}, (3.2)

stable bright(I) = {R |R ⊂ Ī ∧ R is an MSER satisfying Ωhigh} (3.3)

where Ī denotes the intensity inverted image of I. Similarly, less stable ones are

defined as

unstable dark(I) = {R |R ⊂ I ∧ R is an MSER satisfying Ωlow,

∧ ∀R′ ∈ stable dark(I) : R ∩R′ = ∅},
(3.4)

unstable bright(I) = {R |R ⊂ I ∧ R is an MSER satisfying Ωlow

∧ ∀R′ ∈ stable bright(I) : R ∩R′ = ∅}
(3.5)
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Figure 3.3 shows these four groups of MSERs for three different scene types.

As seen in the figure, stable MSERs are observed especially on buildings and their

shadows while unstable ones are seen everywhere like random sampling.

3.2 Feature Extraction

We extract several features from MSERs to identify the location where they are

observed. Interest regions become more discriminative with their surroundings.

The size of ellipses fitted to MSERs are expanded before extracting features from

these regions. This method is proposed by Sivic et al. in [40]. We group the pixels

inside expanded ellipses into two sets. The first set represents the MSER region

and consists of pixels near to ellipse center whereas the other group containing

outer pixels represents the surroundings of the MSER. As mentioned previously,

each MSER is represented with two parameters (µ,Σ). We denote the inner

and outer groups of pixels as Rin and Rout, respectively. Image I is defined on

D ⊂ Z2, then two groups are defined by

Rin =
{
x ∈ D

∣∣ (x− µ)>Σ−1(x− µ) ≤ r2
1

}
, (3.6)

Rout =
{
x ∈ D

∣∣ r2
1 < (x− µ)>Σ−1(x− µ) ≤ r2

2

}
(3.7)

where every x represents a single pixel coordinate. For a given MSER, expanded

ellipses and the pixels in regions Rin, Rout are shown on both panchromatic and

multispectral bands in Figure 3.4.

We extract 17 rotation-invariant features from each MSER. Exactly 10 of them

are basic features such as mean and standard deviation extracted from both Rin

and Rout. Table 3.1 shows these basic 10 features.

The other 7 features are computed from the union group, Rall = Rin ∪ Rout.

These are 4 granulometry features, area and aspect ratio of ellipse, and moment

of inertia.
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Figure 3.3: Ellipses fitted to MSER groups stable dark, stable bright, unstable dark
and unstable bright are drawn with green, red, yellow and cyan, respectively
on different scene types for parameter sets Ωhigh = (10, 60, 5000, 0.4, 1) and
Ωlow = (5, 35, 1000, 4, 1).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Satellite image of same region is given in (a) panchromatic and (d)
visible multispectral bands. In (b) and (e), a given MSER is drawn with yel-
low and ellipse fitted to this MSER is drawn with green. Expanded ellipses at
squared Mahalanobis distance r2

1 = 5 and r2
2 = 20 are drawn with red and cyan,

respectively. In (c) and (f), pixels in Rin and Rout are shown for different bands.

Table 3.1: Ten basic features extracted from four bands and two regions.
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Green
mean mean

band

Blue
mean mean

band
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Granulometry

Granulometry is a technique to analyze the size and shape of granular materi-

als. The idea is based on sieving a sample through various sized and shaped sieves

[44]. A collection of grains is analyzed by sieving through sieves with increasing

mesh size while measuring the mass retained by each sieve [41].

The concept of granulometry is extended for images by considering them as

grains and applying morphological opening and closing with a family of struc-

turing elements with increasing sizes [41]. Morphological opening provides infor-

mation about image contents which are brighter than their neighborhoods and

in contrast closing operation gives information about regions darker than their

neighborhoods. Size information of these structures are obtained from the size of

structuring element used in the morphological operation. Besides the information

gained from standard deviation, granulometry produces useful information about

the arrangement of objects in the expanded ellipse region.

We use only two sizes of structuring element, a disk with radii 2 and 7. They

are employed to detect smaller and bigger structures in the image, respectively.

The granulometry features are extracted from the region Rall in panchromatic

band using morphological opening and closing, resulting in 4 granulometry fea-

tures. Let ψ denote the structuring element, we compute the granulometry fea-

ture, Φ, known as normalized size distribution as

Φ(I, ψ) =

∑
x∈Rall

(
I ◦ ψ

)
(x)∑

x∈Rall I(x)
(3.8)

where ◦ denotes morphological opening; for morphological closing features it

should be replaced by • denoting morphological closing.

Figure 3.5 shows results of morphological opening and closing with disk struc-

turing element with radii 2 and 7 on sample images from three different classes.

As shown in the figure, the urban area image is affected from morphological

operations the most and the forest image is affected the least.
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Figure 3.5: Results of morphological operations on images from three different
classes. Images from top to down are in the order: original images, images closed
by disk with radii 2, images closed by disk with radii 7, images opened by disk
with radii 2 and images opened by disk with radii 7.
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Figure 3.6: A sample ellipse and its eigenvectors e1 and e2 are shown, correspond-
ing eigenvalues are λ1 and λ2, respectively. Major and minor diameters are also
shown.

Moment of Inertia

Another feature computed from Rall is the moment of inertia. It provides

useful information about intensity distribution in the expanded region with re-

spect to the distance to ellipse center. The level of intensity change between the

MSER and its surrounding can be identified with this feature. The formula is

given below

MI =

∑
x∈Rall I(x) · (x− µ)>Σ−1(x− µ) / r2

2∑
x∈Rall I(x)

. (3.9)

The value of MI is in the range [0, 1] due to division by r2
2 in the numerator.

Area and Aspect Ratio of Ellipse

The last two features are the area and aspect ratio of ellipse. These features

give information about the shape of MSER. These features are calculated using

the eigenvalues of Σ. Figure 3.6 shows a sample ellipse, its eigenvectors and

eigenvalues. Let λ1 and λ2 be the eigenvalues of Σ in descending order. The area

of the ellipse is equal to π
√
λ1λ2 and the aspect ratio is equal to

√
λ1/λ2.
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3.3 Graph Construction

We have tried to extract local image features thus far. As the next step, we

discretize the features extracted from MSERs in order to construct a codebook.

By this way, each MSER will be a visual word from the codebook. Image repre-

sentation by visual words is called the bag of words representation [28]. However,

this method ignores the relationships between visual words. Instead, we propose

a graph representation which encapsulates local image features as well as the

spatial information of the scene.

The definition of a labeled graph is given below and the graph construction

steps are described in the following subsections.

Definition 3.2 (Labeled graph, [18]).

A labeled or attributed graph is a triplet G = (V,E, `), where V is the set of

vertices, E ⊆ V × V − {(v, v) | v ∈ V } is the set of edges, and ` : V ∪E → Γ is a

function that assigns labels from the set Γ to nodes and edges.

3.3.1 Nodes and Labels

Now, we have 17-dimensional feature vectors for each MSER in 4 different groups.

These are discretized using k-means clustering separately for each group. We

employ the k-means++ algorithm proposed by Arthur and Vassilvitskii in [3]

owing to its better seed initialization. It can be seen in Algorithm 1. Each MSER

corresponds to a graph node where its label is determined from the output of the

k-means algorithm. In other words, the set of vertices V is the union of four region

groups and the labeling function ` is a mapping from MSERs to the output of

the clustering algorithm performed for every region group. The parameter of the

clustering algorithm, number of clusters k, has a major effect on the performance

of image classification. This effect will be discussed in Chapters 6. The algorithm

is applied to each region group, so the parameter set for the number of labels is

denoted by Υ = (ksd, ksb, kud, kub) where the initials of the region groups are

used as the indexes of the parameters. We normalize each feature to zero mean
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and unit variance before applying the k-means algorithm. Cluster centers and

normalization parameters are also used in the testing stage. For an unknown

image, the labels of graph nodes are assigned according to the closest cluster

center to the feature vector after the normalization.

Algorithm 1 k-means++ Algorithm, [3]

Input: Set of data points, X
Number of clusters, k

Output: Clusters of data points, C
1: Choose an initial center c1 uniformly at random from X .

2: Choose the next center ci, selecting ci = x′ ∈ X with probability D(x′)2∑
x∈X D(x)2

where D(x) denotes the shortest distance from a data point x to the closest
center we have already chosen.

3: Repeat Step 2 until we have chosen a total of k centers.
4: Proceed as with the standard k-means algorithm.

3.3.2 Spatial Relationships and Edges

The final step of graph construction is to connect every neighboring node pair

with an undirected edge. To do so, we locate the nodes in V at ellipse centers. We

can determine whether given two nodes are neighbors or not by computing the

Euclidean distance between the nodes and comparing it to a threshold. However,

such a threshold is scale dependent [17] and cannot be automatically set for

different scenes because the density of nodes in different types of scenes differs.

In addition, a global threshold defined for all scene types creates more complex

graphs for the images in which large number of nodes are found such as urban

areas and it may produce unconnected nodes for the images with fewer number

of nodes such as fields. To handle such problems we use the Voronoi tessellation

where the nodes correspond to the cell centroids. The nodes whose cells are

neighbors (sharing an edge) in the Voronoi tessellation are considered as neighbor

nodes and are connected by undirected edges. In other words, the set of edges

can be given by

E =
{

(u, v) |u, v ∈ V ∧ u and v are neighbors in the Voronoi diagram
}

(3.10)
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and the labeling function ` assigns the same trivial label to every edge, means we

ignore edge labels.

The Voronoi tessellation successfully partitions the image region; however,

some cell pairs which are not neighboring inside the image region may become

neighboring outside the image region as in Figure 3.7(a). The graph constructed

from this tessellation includes unnecessary edges between some outer nodes that

can be seen in Figure 3.7(c). Our solution to this problem is to construct graph

from whole remote sensing image and then to cut this graph into tiles (see Fig-

ures 3.7(b) and 3.7(d)).

All steps of graph construction are shown in Figure 3.8. This process is applied

to every image in both training and testing stages. As a result, we produce a set

of graphs which encode image content appropriately for each image and this set

provides an abstraction level for new images.
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(a) (b)

(c) (d)

Figure 3.7: The problem of discovering neighboring node pairs in the Voronoi
tessellation is shown in (a) and solution to this problem using external nodes is
seen in (b). Corresponding graphs are given in (c) and (d), respectively.
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(a) Input image (b) Ellipses fitted to MSERs

(c) Voronoi Diagram (d) Image graph

Figure 3.8: Graph construction steps. The color and shape of a node in (d)
represent its label after k-means clustering.



Chapter 4

Graph Mining

11:15, restate my assumptions:

1. Mathematics is the language of nature.

2. Everything around us can be represented and

understood through numbers.

3. If you graph these numbers, patterns emerge.

Therefore, there are patterns everywhere in nature.

Maximillian Cohen – from the movie π

At the end of previous chapter we manage to represent every image with

a graph. Graphs are powerful in representing image content; however, their

use for image classification has been limited due to inefficiencies in comparisons

of these graphs for classification. All algorithmic tools for feature-based object

representations can be available for graphs if they are embedded in vector spaces.

For example, the dissimilarity representation [36] developed by Pekalska converts

an input graph to feature vector with respect to a set of graph patterns called

prototypes. The ith element of this vector is equal to the graph edit distance [37]

between the input graph and the ith prototype. This method works quite well

for matching relatively small graphs but it can become quite restrictive for very

detailed image content with a large number of nodes and edges such as the graph

in Figure 3.8(d). Furthermore, graph edit distance produces unreliable results

32
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when the number of edit operations are too large and it is inefficient due to high

computational complexity. Another graph embedding method is representing a

graph as a frequency vector (histogram vector) for a given set of subgraphs [16].

The ith element of this vector is equal to the number of times (frequency) that

the ith subgraph occurs in the input graph. The difficult part of this approach

is to determine the subgraph set. For image classification, such a subgraph set

should contain

1. Frequent graph patterns,

2. Discriminative graph patterns, and

3. Graph patterns having low redundancy.

The first criterion ensures that the subgraphs in the set can also be found in

an unknown image graph. The second criterion guarantees the performance of

classifiers, and the final criterion avoids redundancy that leads to the curse of

dimensionality. To find the set satisfying these criteria, we propose a graph

mining algorithm that first discovers frequent subgraphs from the image graph

set, then discriminative subgraphs in the set are selected and finally redundant

ones are removed from the set. We employ two methods from the literature for the

first and third criteria, and develop a novel algorithm for mining discriminative

patterns. The flowchart of the algorithm is displayed in Figure 4.1.

In this study we are dealing with image graphs but the subgraph-graph re-

lation is analogous with term-document and symbol-string relations. Hence, the

histogram vector method can also be extended for these relations, i.e. in the field

of information retrieval. Therefore, we will use the term pattern to generalize

subgraphs/terms/symbols in this chapter until Section 4.6. We first explain our

data mining method in the following sections, then we specialize the method for

graph mining.
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Figure 4.1: Steps of graph mining algorithm
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4.1 Foundations of Pattern Mining

Before the details of the algorithm, we would like to give some background in-

formation about pattern mining. In this chapter we use a similar notation to

Bringmann’s in [10] and the definitions in this section are mainly taken from that

study.

A definition of the task of finding all potentially interesting patterns is given

by Mannila and Toivonen [30]. The result of a data mining task is defined as a

theory depending on three parameters: a pattern language L, a dataset D, and a

selection predicate φ.

Definition 4.1 (Theory of φ with respect to L and D, [30]).

Assume a dataset D, a pattern language L for expressing properties or defining

subgroups of the data, and a selection predicate φ are given. The predicate φ

is used for evaluating whether a pattern π ∈ L defines a potentially interesting

subclass of D. The task of finding the theory of D with respect to L and φ is

defined as

Th(L,D, φ) = {π ∈ L |φ(π,D) is true} (4.1)

In our problem, the selection predicate φ is true if the pattern π is frequent,

discriminative and not redundant for the dataset D. We continue our definitions

with the matching function. Many graph mining researchers define matching

function as whether given subgraph occurs in example graph or not as in [10].

However, our study requires the number of times that a pattern occurs in an

example (Details will be given in the following sections). Therefore, we define the

matching function differently as follows.

Definition 4.2 (Matching Function).

Assume a pattern language L, a dataset D, and an evaluation predicate ϕ is

given. The number of valid occurrences of pattern π in x ∈ D is defined as

match : L ×D → Z0
+ such that

match(π, x, ϕ) =
∣∣{h |h(π) ⊆ x ∧ ϕ(h, π, x) is true}

∣∣ (4.2)

where h is called a mapping of pattern π into example x.
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We use the terms valid occurrences and mapping in this definition instead

of simply saying the number of occurrences of π in x because the occurrence of

graph patterns in other graphs needs additional evaluations than term or symbol

patterns. We will describe some evaluation predicates for graph patterns in Sec-

tion 4.6; until there omitting the parameter ϕ from match(π, x, ϕ) for simplicity,

we have match(π, x) as an equivalent to the former.

The frequency vector described in the introductory paragraph of this chapter

is called propositionalization and defined below.

Definition 4.3 (Propositionalization, [10]).

Given a set of n patterns S = {π1, . . . , πn}, we define the feature vector of an

example x as
−→
fS(x) =

(
match(π1, x), . . . ,match(πn, x)

)>
. (4.3)

Total number of valid occurrences of a pattern in a dataset is called support of

that pattern. Again, we drop the evaluation predicate ϕ for the support definition.

Definition 4.4 (Support).

Given a pattern language L and a dataset D, support of a pattern π in D is

defined as

supp(π,D) =
∑
x∈D

match(π, x). (4.4)

And, our last definition in this section is frequency.

Definition 4.5 (Frequency).

Given a pattern language L, a dataset D, the frequency of a pattern π in D is

defined as

freq(π,D) =
supp(π,D)

|D|
. (4.5)

4.2 Frequent Pattern Mining

Our graph mining algorithm starts with discovering frequent patterns in the

dataset. Frequent patterns have broad application areas such as association
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rule mining, indexing, clustering and classification [14]. We are interested in

the usefulness of frequent patterns in classification. Frequent pattern mining was

extensively studied in the data mining community and numerous algorithms has

been proposed in domains of different pattern types.

Assume dataset D is a set of examples where each example is labeled by one

class in a domain of classes C. The set of examples labeled by the class c is

denoted by Dc. In notation, we can say D =
⋃
i∈C Di. The problem of frequent

pattern discovery for class c can be formulated as finding all patterns generated

by the pattern language L, whose support in dataset Dc is grater than a threshold

θ supp
c . The set of all frequent patterns for class c is

Fc =
{
π ∈ L | supp(π,Dc) ≥ θ supp

c

}
. (4.6)

Assume we try to find frequent patterns in Dc. Let examples labeled by class

c be the set of positive examples, denoted by D+ and the set of all other examples

labeled by other classes be the set of negative examples, denoted by D−. Some

frequent pattern mining applications limit the support of frequent patterns in

negative set. In set definition, it is given by

Fc =
{
π ∈ L | supp(π,D+) ≥ θ supp

+ ∧ supp(π,D−) ≤ θ supp
−
}
. (4.7)

Since the size and property of a dataset varies among classes we can set

different thresholds for each class. In our study, we mine the set of frequent

patterns for each class, then they will be used as input to the next step which is

correlated pattern mining.

4.3 Class Correlated Pattern Mining

Our second objective for the selected patterns is being discriminating for classi-

fication. Assume a dataset D labeled with three classes such as D1, D2 and D3.

A discriminative pattern is expected to be found in examples of one class and

not in the other classes. Such a relation between a pattern and a class is called



CHAPTER 4. GRAPH MINING 38

correlation. Two types of correlation have been defined: Positive and negative

correlation. Assume we focus on finding correlated patterns of the first class. A

pattern observed in only the first class, D1, is called positively correlated pattern

with the first class or shortly class-correlated pattern. In contrast, a negatively

correlated pattern is found in all classes except the first class (in this case D2 and

D3). Both positive and negative correlation can be useful for classification. For

example, an unseen example can be assigned to the first class if it includes posi-

tively correlated patterns with the first class. On the other hand, observation of

negatively correlated patterns with the first class in an unseen example indicates

that the example does not belong to the first class. Previous works on class-

correlated patterns in [10, 33] only involve two-class datasets and the study in

[34] handles multi-class correlation. However, all previous methods on correlated

pattern mining base on binary matching function. Hence, more than one occur-

rences of a pattern in an example have the same effect with a single occurrence on

correlation measure. We propose a novel technique to mine multi-class correlated

patterns, in which the number of occurrences are taken into consideration. Unlike

previous works, we are only dealing with positively correlated patterns and do

not consider negatively correlated patterns. The following subsection explains

the mathematical modeling of patterns in examples and the second subsection

gives details of mining correlated patterns according to the model.

4.3.1 Mathematical Modeling of Pattern Support

We start our algorithm by deriving the probability that a pattern π occurs k times

in an example. Let x be a document containing Nt terms and the probability that

a randomly selected term t from x is an instance of the pattern π be a Bernoulli

distribution with Pr{T = π} = p and Pr{T 6= π} = 1 − Pr{T = π} = 1 − p.

Then, the probability that x contains π for k times is a Binomial distribution

with

Pr{K = k} =

(
Nt

k

)
pk(1− p)Nt−k for k = 0, 1, 2, . . . , Nt. (4.8)

We now define the expected number of occurrences as λ = pNt. We generalize
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Figure 4.2: Poisson distributions with four different expected values.

this probability by assuming that the size of document is unbounded, then

Pr{K = k} = lim
Nt→∞

(
Nt

k

)
pk(1− p)Nt−k =

λke−λ

k!
for k ∈ Z0

+. (4.9)

The limiting case of Binomial distribution is known as Poisson distribution

and is denoted by Pois(k |λ). Poisson distributions with different expected values

are shown in Figure 4.2.

We model the term frequency in a document as a Poisson distribution. How-

ever, Church and Gale claim in [15] that term rates vary from author-to-author,

topic-to-topic, document-to-document, section-to-section, and paragraph-to-

paragraph (and theme-to-theme if we consider images). They propose Poisson

mixture to capture much of this heterogeneous structure by allowing the Poisson

parameter λ to vary over documents. It is subject to a density function ϑ aimed

to capture dependencies on hidden variables such author, topic, etc.

Definition 4.6 (Poisson Mixtures, [15]).

Given the density function ϑ to capture dependencies on hidden variables, the

general form of a Poisson mixture is

p(k) =

∫ ∞
0

ϑ(λ)Pois(k |λ) dλ (4.10)

where ϑ density function should integrate to 1. That is,
∫∞

0
ϑ(λ) dλ = 1.
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In this study we will use a mixture of finite number of Poisson distributions.

Therefore, we use coefficients αj instead of ϑ function:

p(k) =
m∑
j=1

αjPois(k |λj) (4.11)

where
∑m

j=1 αj = 1 such that αj ≥ 0 for j = 1, . . . ,m.

The next step of modeling is parameter estimation for Poisson mixtures from

a dataset. The Expectation-Maximization(EM) Algorithm can be used for the

solution to the maximum-likelihood parameter estimation problem. The EM

algorithm is exhaustively described in [6] for Gaussian mixture model and we

will extend this study for Poisson mixture model.

We have a density function p(k |Θ) governed by the set of parameters Θ =

(α1, . . . , αm, λ1, . . . , λm) and a dataset of size n, supposedly drawn independently

from this distribution, i.e. K = {k1, . . . , kn}. The resulting density for samples is

p(K |Θ) =
n∏
i=1

p(ki |Θ) = L(Θ | K) (4.12)

where L(Θ | K) is called the likelihood function. The goal of EM algorithm is to

find Θ∗ iteratively where

Θ∗ = arg max
Θ

L(Θ | K). (4.13)

We assume that a complete data set exists as a combination of the observed

but incomplete data K and the missing data Z. The EM algorithm seeks to find

the maximum likelihood estimate (MLE) of the marginal likelihood by iteratively

applying the following two steps:

Expectation step: The expected value of the log likelihood function is calcu-

lated with respect to the unknown data Z given the observed data K and the

current parameter estimates Θ(i−1).

Q
(
Θ,Θ(i−1)

)
= E

[
log p(K,Z |Θ)

∣∣K,Θ(i−1)
]
. (4.14)
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Maximization step: The expectation can be maximized by finding optimum

values for the new parameters Θ as

Θ(i) = arg max
Θ

Q
(
Θ,Θ(i−1)

)
. (4.15)

We can maximize Q with respect to the two sets of parameters αj and λj, inde-

pendently. Fortunately, the estimates for these parameters are same as Gaussian

mixture model (estimate for λ of Poisson distribution is the same with estimate

for µ of Gaussian distribution).

The estimate for αj can be computed as

α̂j =
1

n

n∑
i=1

p
(
j | ki,Θ(g)

)
(4.16)

where

p
(
j | ki,Θ(g)

)
=

α
(g)
j Pois

(
ki |λ(g)

j

)∑m
t=1 α

(g)
t Pois

(
ki |λ(g)

t

) . (4.17)

Equating the partial derivative of Q
(
Θ,Θ(g)

)
with respect to λj to zero gives

λ̂j =

∑n
i=1 p

(
j | ki,Θ(g)

)
ki∑n

i=1 p
(
j | ki,Θ(g)

) . (4.18)

These steps continue until the change in log-likelihood between two iterations

is less than a threshold or the number of iterations reaches a limit.

Corollary 4.1 (Relationship between weighted average and sample mean).

After each iteration of the EM algorithm, the weighted average equals to the

sample mean:
m∑
j=1

α̂jλ̂j =
1

n

n∑
i=1

ki. (4.19)

Proof. Putting (4.16) and (4.18) into (4.19) gives

m∑
j=1

α̂jλ̂j =
m∑
j=1

(∑n
i=1 p

(
j | ki,Θ(g)

)
n

×
∑n

i=1 p
(
j | ki,Θ(g)

)
ki∑n

i=1 p
(
j | ki,Θ(g)

) )

=
1

n

n∑
i=1

ki

m∑
j=1

p
(
j | ki,Θ(g)

)
=

1

n

n∑
i=1

ki.

(4.20)
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Figure 4.3: A sample histogram of a dataset with 100 elements and fitting mix-
tures of 3 Poisson distributions to this histogram are shown in blue and red,
respectively.

This shows the equality between weighted average and sample mean.

A sample histogram and the Poisson mixture trained on this data can be seen

in Figure 4.3.

Returning to our problem, we employ Poisson mixture to model the proba-

bility of the term frequency of pattern π in a document randomly selected from

the corpus D. Thus, the dataset used in the EM algorithm is K = {k1, . . . , kn} ={
match(π, x1), . . . ,match(π, xn)

}
for D = {x1, . . . , xn}.

4.3.2 Correlated Patterns

In this section we give details of correlated-pattern mining according the proba-

bility calculations drawn in the previous section. A pattern π is called correlated

with a class c ∈ C if that pattern is frequently observed in Dc while it is sel-

dom seen in Dc′ for all c′ ∈ C such that c′ 6= c. Using the support of a pattern

in correlation measure may result in wrong classification of unknown documents

because the support in a dataset does not give any frequency information of the

pattern in individual documents. For example, a pattern may occur frequently
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in some documents of a dataset while not occurring in other documents. There-

fore, frequency analysis of a pattern should be done using the frequency in each

document as in the previous section.

Assume a pattern π which does not occur in a dataset D, in notational form

supp(π,D) = 0, then training the EM algorithm on such a case produces the

following density function pref, which we call the reference distribution,

pref(k) =

 1 if k = 0

0 otherwise.
(4.21)

As understood from its name we employ this density function for comparison

with other distributions in correlation measurement. Let pc(k |π,Dc) denote the

Poisson mixture distribution trained for pattern π on dataset Dc. We compute the

distance (dissimilarity) between density functions pc(k | π,Dc) and pref(k) using

the Earth mover’s distance technique.

In terms of positive correlation between pattern π and class c, the distance

between pc(k |π,Dc) and pref(k) should be as large as possible while the distance

between pc′(k | π,Dc′) and pref(k) should be as small as possible for all c′ ∈ C such

that c′ 6= c.

Earth mover’s distance is proposed by [38] to measure the dissimilarity be-

tween not only probability distributions but also histograms and clusters. Levina

and Bickel [27] showed that Earth mover’s distance is conceptually equivalent to

Mallow distance on probability distributions but we continue calling it the Earth

mover’s distance in this study.

Definition 4.7 (Earth mover’s distance, [38]).

Let Q =
{

(q1, wq1), . . . , (qr, wqr)
}

be the signature with r clusters, where qi is

the representative of the ith data cluster and wqi is the number of points in the

cluster. Let Q′ =
{

(q′1, wq′1), . . . , (q
′
s, wq′s)

}
be the second signature with s clusters;

and D =
[
dij
]

is the ground distance matrix where dij is some measure of distance

between clusters of qi and q′j. Earth mover’s distance is computed by solving the

optimization problem of finding a flow F =
[
fij
]
, with fij the flow from qi to q′j,
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that minimizes the overall work

Minimize WORK(Q,Q′,F) =
r∑
i=1

s∑
j=1

dijfij (4.22)

Subject to fij ≥ 0, 1 ≤ i ≤ r, 1 ≤ j ≤ s, (4.23)
s∑
j=1

fij ≤ wqi , 1 ≤ i ≤ r, (4.24)

r∑
i=1

fij ≤ wq′j , 1 ≤ j ≤ s, (4.25)

r∑
i=1

s∑
j=1

fij = min

(
r∑
i=1

wqi ,
s∑
j=1

wq′j

)
. (4.26)

Once the optimal flow f ∗ij is found, the Earth Mover’s distance between Q and

Q′ is defined as

EMD(Q,Q′) =

∑r
i=1

∑s
j=1 f

∗
ijdij∑r

i=1

∑s
j=1 f

∗
ij

. (4.27)

According to (4.24) and (4.25), we can transform a discrete distribution p(k)

defined in Z0
+ to the signature form by

P =
{(
k, p(k)

) ∣∣ k ∈ Z0
+ ∧ p(k) > 0

}
. (4.28)

The signature size of a Poisson mixture may be infinite, or the signature may

be reduced to finite elements if the condition in (4.28) is changed to p(k) > ε for

a small number ε.

From (4.28), the signature form of the distribution pref(k) becomes

Pref =
{

(q′1, wq′1)
}

=
{

(0, 1)
}

. Let Pc denote the signature form of probability

distribution pc(k | π,Dc), then the optimal flow from Pc to Pref is

f ∗ij =

 pc(ki | π,Dc) if j = 1

0 otherwise.
(4.29)
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Constraint (4.26) is actually equal to
∑r

i=1

∑s
j=1 fij = 1 for probability dis-

tributions and this constraint forces all earth to flow from every qi to the only

element of Pref, which is q′1. Finally, we need to define a ground distance function,

d : Z2 → R0
+, for the ground distance matrix D =

[
dij
]

=
[
d(qi, q

′
j)
]
. Then, the

Earth mover’s distance is computed as

EMD(Pc, Pref) =

∑r
i=1

∑s
j=1 f

∗
ijdij∑r

i=1

∑s
j=1 f

∗
ij

=
r∑
i=1

pc(ki | π,Dc) d(ki, 0)

=
r∑
i=1

pc(ki | π,Dc) d′(ki)

= E
[
d′(K)

∣∣ π,Dc]
(4.30)

where d′(k) = d(k, 0) and K is a random variable K ∈ {k1, . . . , kr} or more

generally K ∼ Z0
+. One possible definition of the distance function for two

distributions is d(i, j) = 1 − e−ξ|i−j| where ξ is a regulation constant. Note that

d(i, j) ∈ [0, 1], and

d′(i) = 1− e−ξi for i ≥ 0. (4.31)

Accordingly, the Earth mover’s distance is in the same range [0, 1] due to

definition of distance function. One reason why we choose this nonlinear function

is to prevent outliers in the dataset from dominating the Earth mover’s distance.

The regulation constant ξ is used for this purpose.

Assume we try to find correlated patterns of class c. Each frequent pattern

π ∈ Fc mined in the previous section should be tested by a correlation measure

γ based on the Earth mover’s distance. The correlation measure that we define

has two parameters: positive distance pcπ and negative distance ncπ. The positive

distance is the Earth mover’s distance between Pc and Pref for dataset Dc. On

the other hand, the negative distance is computed from datasets Dc′ for all c′ ∈ C
such that c′ 6= c. In terms of classification, the class which will cause confusion

with class c is the one with the maximum Earth mover’s distance between Pc′

and Pref from all c′ ∈ C such that c′ 6= c. Thus, the positive and negative distance
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used in correlation measure γ is given by

pcπ = E
[
d′(K)

∣∣ π,Dc], ncπ = max
c′ 6=c, c′∈C

E
[
d′(K)

∣∣ π,Dc′]. (4.32)

The computation procedure of positive and negative distances are illustrated

in Figure 4.4 for four classes. As shown in the figure, for each class the probability

distribution is computed by the EM algorithm and the Earth mover’s distance

is computed between this distribution and the reference distribution. Then, the

distance computed for the interest class c is assigned pcπ and the greatest distance

computed for the other classes is assigned to ncπ.

We use pcπ and ncπ as parameters to measure the correlation between the pat-

tern π and the class c. The correlation measures commonly used in the literatures

are chi-square (χ2) test and information gain, which are computed from a con-

tingency table. Instead, we derive a correlation function γ from the χ2 test as

follows without indices:

γ(p, n) =
(p− n)|p− n|

(p+ n)(2− p− n)
. (4.33)

The range of γ function is [−1, 1]. Positive values of γ for pattern π im-

ply positive correlation and negative values indicate negative correlation. The

correlation function γ can be seen in Figure 4.5.

Similar to frequent pattern mining, correlated pattern mining is defined as

finding all patterns π ∈ L whose correlation with Dc is greater than a threshold

θ cor
c , that is γ(pcπ, n

c
π) ≥ θ cor

c . According to our objectives for pattern mining,

we check correlation of only frequent patterns for each class c ∈ C. To decrease

computational cost we can define a lower bound for support threshold θ supp
c in

the previous section with respect to correlation threshold θ cor
c . The rest of this

section is devoted to the calculations of this relation.

Lemma 4.1 (Lower and upper bounds of γ function).

The lower and upper bounds of γ(p, n) is given by

min
p≥p′, n≤n′

γ(p, n) = max
p≤p′, n≥n′

γ(p, n) = γ(p′, n′). (4.34)
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Figure 4.4: The procedure for positive and negative distance computation is
illustrated for four classes. The interest class is the second one and the distances
are computed as p = EMD(P2, Pref) and n = EMD(P3, Pref).
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Figure 4.5: The correlation function γ(p, n)

Proof. Partial derivatives give the limits of γ(p, n).

∂γ(p, n)

∂p
=

2(p− 2pn+ 3n− 2n2)|p− n|
(p+ n)2(2− p− n)2

=
2
(
p(1− n) + n(3− p− 2n)

)
|p− n|

(p+ n)2(2− p− n)2
.

(4.35)

Due to definition of d(i, j), the pn space is defined for 0 ≤ p, n ≤ 1. Hence, all

terms in (4.35) are nonnegative. As a result, ∂γ(p,n)
∂p
≥ 0 and we can say

γ(p, n) ≥ γ(p′, n) for 0 ≤ p′ ≤ p ≤ 1. (4.36)

Similarly,

∂γ(p, n)

∂n
= −2(3p− 2p2 − 2pn+ n)|p− n|

(p+ n)2(2− p− n)2

= −
2
(
p(3− 2p− n) + n(1− p)

)
|p− n|

(p+ n)2(2− p− n)2
.

(4.37)

All terms in (4.37) are nonnegative. Consequently, ∂γ(p,n)
∂n

≤ 0 and we can also

say

γ(p, n) ≥ γ(p, n′) for 0 ≤ n ≤ n′ ≤ 1. (4.38)

Combining (4.36) and (4.38) gives (4.34).
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Theorem 4.1 (Correlation–Positive support relation).

For a given pattern π ∈ L, if γ(pcπ, n
c
π) ≥ θ cor

c for some thresholds θ cor
c ≥ 0

where pcπ and ncπ are computed from Dc and Dc′ for all c′ ∈ C such that c′ 6= c,

respectively, then

supp(π,Dc) ≥ −
|Dc|

1− e−ξ
ln

(
1− θ cor

c

1 + θ cor
c

)
. (4.39)

Proof. According to Lemma 4.1, we can say

γ(pcπ, 0) ≥ γ(pcπ, n
c
π) ≥ θ cor

c . (4.40)

Putting (4.33) into (4.40),

pcπ
2− pcπ

≥ θ cor
c ⇒ pcπ ≥

2θ cor
c

1 + θ cor
c

. (4.41)

Now, we compute pcπ from (4.32). Let the parameters of Poisson mixture

be Θ = (α1, . . . , αm, λ1, . . . , λm) found by the EM algorithm for pc(k | π,Dc) on

observed data K =
{
match(π, x1), . . . ,match(π, xn)

}
where Dc = {x1, . . . , xn}.

The positive distance is computed as

pcπ = E
[
d′(K)

∣∣ π,Dc] =
∞∑
i=0

pc(i |π,Dc) d′(i)

=
∞∑
i=0

m∑
j=1

αjPois(i |λj) d′(i)

=
∞∑
i=0

m∑
j=1

αj
λij e

−λj

i!
(1− e−ξi)

=
m∑
j=1

αje
−λj

∞∑
i=0

(
λij
i!
− (λje

−ξ)
i

i!

)

=
m∑
j=1

αje
−λj
(
eλj − e(λje

−ξ)
)

=
m∑
j=1

(
αj − αje−λj(1−e

−ξ)
)

= 1−
m∑
j=1

αje
−λjd′(1).

(4.42)
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Introducing ε = d′(1) results in pcπ = 1 −
∑m

j=1 αje
−ελj . Combining (4.41) and

(4.42) gives

1−
m∑
j=1

αje
−ελj ≥ 2θ cor

c

1 + θ cor
c

⇒
m∑
j=1

αje
−ελj ≤ 1− θ cor

c

1 + θ cor
c

. (4.43)

Before continuing the proof, we need to define convex function and Jensen’s

inequality.

Definition 4.8 (Convex function).

Let C be a convex subset of Rn. A function f : C → R is called convex if

f
(
ax1 + (1− a)x2

)
≤ af(x1) + (1− a)f(x2) for a ∈ [0, 1] and x1 6= x2. (4.44)

See Figure 4.6 for a sample convex function.

Theorem 4.2 (Jensen’s inequality).

If f is a convex function and X is a random variable, then

f
(
E[X]

)
≤ E

[
f(X)

]
. (4.45)

In finite form, numbers x1, x2, . . . , xn are in domain of f , and positive weights ai

such that
∑n

i=1 ai = 1, Jensen’s inequality can be stated as

f

(
n∑
i=1

aixi

)
≤

n∑
i=1

aif(xi). (4.46)

We define function f : R → R such as f(x) = e−εx. This function is strictly

convex because d2f(x)
dx2

= ε2e−εx > 0. Now, we can extend (4.43) using (4.46) and

f function as follows

m∑
j=1

αjf(λj) ≤
1− θ cor

c

1 + θ cor
c

⇒ f

(
m∑
j=1

αjλj

)
≤ 1− θ cor

c

1 + θ cor
c

. (4.47)

Substituting f(x) with e−εx,

⇒ exp

(
−ε

m∑
j=1

αjλj

)
≤ 1− θ cor

c

1 + θ cor
c

⇒ −ε
m∑
j=1

αjλj ≤ ln

(
1− θ cor

c

1 + θ cor
c

)
.

(4.48)
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Figure 4.6: Plot of a convex function f

Using (4.19) and the definition of K, we can say

m∑
j=1

αjλj =
1

n

n∑
i=1

ki =
1

n

n∑
i=1

match(π, xi) =
1

n
supp(π,Dc). (4.49)

Finally, using (4.48) and (4.49), and substituting ε with 1− e−ξ, and n with |Dc|
makes

supp(π,Dc) ≥ −
|Dc|

1− e−ξ
ln

(
1− θ cor

c

1 + θ cor
c

)
. (4.50)

This completes our proof.

The support threshold should be defined considering this relation. Likewise,

the positive distance of a frequent pattern depends on the support threshold as

follows.

Corollary 4.2 (Support threshold–positive distance relation).

Let π ∈ L be a frequent pattern whose support is greater than the threshold θ supp
c

for dataset Dc, then

pcπ ≥ 1− exp

(
−θ

supp
c

|Dc|
(
1− e−ξ

))
. (4.51)
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Proof. Using same convex f function of the previous proof in (4.42), we get

pcπ = 1−
m∑
j=1

αje
−λjd′(1) = 1−

m∑
j=1

αjf(λj)

≥ 1− f
( m∑

j=1

αjλj

)

≥ 1− exp

(
−d′(1)

m∑
j=1

αjλj

)

≥ 1− exp

(
−d
′(1)

n
supp(π,Dc)

)
≥ 1− exp

(
−
(
1− e−ξ

)
θ supp
c

|Dc|

)
.

(4.52)

4.4 Redundancy-Aware Top-k Patterns

After two steps of pattern mining, we have a set of frequent and class-correlated

patterns. Usage of this set for classification suffers from curse of dimensionality

because the set contains many redundant patterns and its size is not limited. Let

the graph patterns in Figure 4.7 be frequent and correlated patterns. As seen in

the figure, the only difference between patterns is an edge. The pattern in 4.7(b)

is found everywhere the pattern in 4.7(a) is found. The number of occurrences

of these two patterns is very close or same in every example of a dataset. As a

result, the significance of these patterns together in a set is equal to significance

of only one of them. In this section we seek a set of most significant k patterns,

which has low redundancy. The method described in this section is suggested by

Xin et al. in [45]. This study gives the definitions for pattern significance and

pattern redundancy as a part of formal problem formulation.

Definition 4.9 (Pattern Significance, [45]).

Given pattern language L, a significance measure is a function S : L → R, S(π)

is the degree of interestingness (or usefulness) of pattern π.
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(a) (b)

Figure 4.7: Two sample redundant graph patterns

Since we focus on classification problem in this study, we choose γ function

as a measure of pattern significance, so S(π) = γ(pcπ, n
c
π). Xin et al. extend the

pattern significance to combined significance and relative significance. Let the

combined significance S(π, π′) denote the collective significance of two individual

patterns π and π′. Before defining relative significance, we need to define pat-

tern redundancy. Given significance measures, pattern redundancy is defined as

follows.

Definition 4.10 (Pattern Redundancy, [45]).

Given the significance measure S, the redundancy R between two patterns π and

π′ is defined as R(π, π′) = S(π) + S(π′)− S(π, π′).

Subsequently, the relative significance of π given π′ is S(π |π′) = S(π)−R(π, π′).

Assuming that combined significance is not less than the significance of any in-

dividual pattern and not grater than the sum of two individual significance; then

the redundancy between patterns π and π′ should satisfy

0 ≤ R(π, π′) ≤ min
(
S(π), S(π′)

)
. (4.53)

According to [45], the ideal redundancy measure R(π, π′) is usually hard to

obtain. Therefore, they suggest using distance between patterns in order to mea-

sure patterns redundancy.

Definition 4.11 (Pattern Distance, [45]).

A distance measure D : L× L → [0, 1] is a mapping from two patterns π, π′ ∈ L
to a value in [0, 1], where 0 means π and π′ are completely relevant and 1 means

π and π′ are totally independent.
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The pattern distance is used for approximating the pattern redundancy. The

following equation which satisfies (4.53) is given in [45].

R(π, π′) =
(
1−D(π, π′)

)
×min

(
S(π), S(π′)

)
. (4.54)

The distance between two patterns depends on the pattern structure. It can

be the edit distance for sequences or the graph edit distance [37] for graph pat-

terns. Alternatively, in the distance function we use the number of occurrences

of patterns in a dataset because it provides the correlation between two patterns

in document level. We define the distance function using cosine similarity in the

field of information retrieval as follows.

D(π, π′) = 1− cosD(π, π′) = 1− u · v
‖u‖ ‖v‖

(4.55)

where u =
−→
fD(π) and v =

−→
fD(π′). We use the whole dataset D =

⋃
i∈C Di, in

distance computation where
−→
fD is defined as

−→
fD(π) =

(
match(π, x1), . . . ,match(π, xn)

)>
(4.56)

where D = {x1, . . . , xn}. By the help of this distance function, we try to find a

set of patterns which occur in not only some examples of the dataset Dc in which

we are interested, but in all examples of Dc if possible.

Finally, the formulation is extended to a set of k patterns Pk ⊂ L. Let G be

a significance measure for a set of patterns, and the redundancy measure for a

set of patterns be L which is hard to obtain [45]. In general,

Ggen(Pk) =
k∑
i=1

S(πi)− L(Pk). (4.57)

The authors of [45] suggest two heuristic evaluation functions Gas (average

significance) and Gms (marginal significance). We prefer using marginal signif-

icance so we only explain this function. The computational model for the new

concept is a graph called redundancy graph:

Definition 4.12 (Redundancy Graph, [45]).

Given a significance measure S and a redundancy measure R for individual pat-

terns, a redundancy graph of a set of k patterns Pk is a weighted graph where
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each pattern, πi, corresponds to node i whose weight is pattern significance S(πi)

and the weight on an edge (i, j) is the redundancy R(πi, πj).

Marginal significance of a set of patterns is computed as

Gms(Pk) =
k∑
i=1

S(πi)− w
(
MST (Pk)

)
(4.58)

where w
(
MST (Pk)

)
denotes the sum of edge weights on the maximum span-

ning tree of the redundancy graph. Given a pattern language L, the problem of

maximal marginal significance (MMS) is to find a set of k patterns Pk such that

Gms(Pk) is maximized. Finally, the study [45] gives Algorithm 2 for the problem

of MMS.

According to our definitions of pattern significance and distance, we obtain

a redundancy-aware set of frequent top-k patterns in terms of correlation. We

denote this set by Sc for class c ∈ C and we apply these mining steps for each

class. Then, all selected patterns are collected in one set S which will be used for

classification. This completes the process of finding a set of patterns satisfying

our objectives given in the beginning of this chapter.

4.5 Summary of the Mining Algorithm

The procedure so far is aiming to find a set of patterns satisfying our objectives

given at the beginning of this chapter. Each step can be considered as a pattern

filter which is responsible for one criterion. To reduce the computational cost,

the filters are connected in series, in other words the input patterns of a filter is

the output of another. The order of filters are same with the section order. First,

the patterns generated by the language L are tested for support with respect to

the threshold θ supp
c and the frequent ones are collected in the set Fc. Next, the

members of this set are tested for the correlation with respect to the threshold

θ cor
c and the set Rc contains patterns which are both frequent and correlated.

The last filter seeks a small subset Pc which has significant and not redundant
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Algorithm 2 Greedy Algorithm for MMS, [45]

Input: A set of n patterns, L = {π1, . . . , πn}
Number of output patterns, k
Significance measure, S
Divergence measure, D

Output: Top-k pattern set, Pk
1: t← 0, T ← maxπ∈L S(π)
2: selected[i]← false for i = 1, . . . , n
3: removed[i]← false for i = 1, . . . , n
4: for i← 1 to k do
5: if there is no pattern left then
6: T ← T+t

2

7: goto line 2
8: end if
9: πs ← the most significant pattern s.t.

selected[s] = false and removed[s] = false
10: selected[s]← true
11: removed[s]← true
12: for j ← 1 to n do
13: if removed[j] = false and selected[j] = false then
14: if S(πj |πs) ≤ T+t

2
then

15: removed[j]← true
16: end if
17: end if
18: end for
19: end for
20: if there are patterns left (πi s.t. removed[i] = false) then
21: t = t+T

2

22: goto line 2
23: end if
24: return selected k-patterns (πi s.t. selected[i] = true)
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patterns. These steps are repeated for each class c ∈ C and then the patterns

satisfying these criteria for some classes are grouped into the final set S which is

used for classification. Algorithm 3 shows the steps of the mining algorithm.

Algorithm 3 Pattern Mining Algorithm

Input: A pattern language, L
A dataset D labeled with classes C
Support thresholds, θ supp

c for each c ∈ C
Correlation thresholds, θ cor

c for each c ∈ C
Number of top patterns for each class, k
An evaluation predicate, ϕ

Output: A pattern set, S
1: S ← ∅
2: for each class c ∈ C do
3: Fc ← ∅
4: for each pattern π generated by L do
5: if supp(π,Dc, ϕ) ≥ θ supp

c then {supp defined in Definition 4.4}
6: Fc ← Fc ∪ {π}
7: end if
8: end for
9: Rc ← ∅

10: for each pattern π ∈ Fc do
11: compute pcπ and ncπ on D {defined in (4.32)}
12: if γ(pcπ, n

c
π) ≥ θ cor

c then {γ defined in (4.33)}
13: Rc ← Rc ∪ {π}
14: end if
15: end for
16: for each pattern π ∈ Rc do
17: compute pattern significance as S[π] = γ(pcπ, n

c
π)

18: for each pattern π′ ∈ Rc do
19: compute pattern distances D[π, π′] = 1−cosD(π, π′) {defined in (4.55)}
20: end for
21: end for
22: Pc ← output of Greedy Algorithm for MMS with Rc, k, S and D
23: S ← S ∪ Pc
24: end for
25: return S

We can analyze search regions of patterns in the pn space. Assume that the

support threshold θ supp
c is chosen greater than the lower bound given in Theo-

rem 4.1. The members of Fc are found in the shaded area (union of dark and
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Figure 4.8: The pn space showing the search regions for the first two steps of the
algorithm. The shaded area (union of dark and light gray) represent the domain
region of Fc and dark gray area represents the domain region of Rc.

light gray) in Figure 4.5 according to Corollary 4.2. After the correlation check,

the region of Rc is reduced to the dark gray area in the figure. The final step

does not reduce the search region in the pn space because set Pc may contain a

pattern π on the correlation boundary S(π) = θ cor
c because of the redundancy

definition.

Someone may claim that changing the order of the first two steps causes

the computational cost to reduce. However, it is not sensible most of the time

because the support test has negligible computation cost compared to the cor-

relation test which includes the execution of the EM algorithm. Furthermore, a

structural language which has a generalization relation among its patterns enables

us to define an anti-monotonic matching function. Such a function provides the

pruning ability in generating frequent patterns of the language using the pattern

growth approach. For example, many frequent graph mining algorithms generate

subgraphs from the dataset. They start generating subgraphs from one node

subgraphs and continue generating new subgraphs by adding nodes and edges to
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the previous ones. In generating process, the subgraphs whose support in the

dataset is less than the threshold are eliminated and only the frequent ones are

preserved. The algorithm stops when no new subgraph can be generated from

the frequent subgraphs.

To recall the theory of φ in Section 4.1, the mining algorithm also tries to find

the theory of a selection predicate. Now, we can define the selection predicate φ

to find the theory with respect to the language L and the dataset D as follows.

φ(π,D) =

 true if ∃c ∈ C : supp(π,Dc) ≥ θ supp
c ∧ γ(pcπ, n

c
π) ≥ θ cor

c ∧ π ∈ Pc

false otherwise.

(4.59)

4.6 Graph Patterns

In this section, we narrow down the theoretical concepts in the previous sections

to graph patterns. All computations in Sections 4.2 to 4.4 are based on definitions

in Section 4.1 and the abstraction of these definitions for all pattern types is based

on the evaluation predicate ϕ. We will define alternative ϕ predicates for graph

patterns. Therefore, we start to use the following graph terminology:

pattern π −→ subgraph g

example x −→ image (input) graph G

dataset D −→ graph set G

Accordingly, a mapping h of pattern π into example x, given in the matching

function definition is called subgraph isomorphism in the graph terminology. The

definition is given by Fiedler and Borgelt as follows.

Definition 4.13 (Subgraph isomorphism, [18]).

Let g = (Vg, Eg, `g) and G = (VG, EG, `G) be two labeled graphs. A sub-

graph isomorphism of g to G is an injective function h : Vg → VG satisfy-

ing ∀v ∈ Vg : `g(v) = `G
(
h(v)

)
and ∀(u, v) ∈ Eg :

(
h(u), h(v)

)
∈ EG ∧
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(a) subgraph (b) input graph

Figure 4.9: An example for overlapping embeddings

`g
(
(u, v)

)
= `G

((
f(u), f(v)

))
.

Every subgraph isomorphism of subgraph g to image graph G defines an

embedding of subgraph g. Different embeddings of g may refer to same nodes in

G as in Figure 4.9. They are called overlapping subgraph isomorphism.

Definition 4.14 (Overlapping subgraph isomorphism, [18]).

Let g = (Vg, Eg, `g) and G = (VG, EG, `G) be two labeled graphs, h1 and h2 two

subgraph isomorphisms of g to G, and Vi =
{
v ∈ VG

∣∣ ∃u ∈ Vg : v = hi(u)
}

,

Ei =
{
e ∈ EG

∣∣∃(u, v) ∈ Eg : e =
(
hi(u), hi(v)

)}
for i = 1 or 2. Two subgraph

isomorphisms h1 and h2 are called overlapping iff V1 ∩V2 6= ∅ and written h1◦◦h2.

Also, h1 and h2 are called equivalent, written h1 ◦ h2, iff V1 = V2 and E1 = E2.

Finally, h1 and h2 are called identical, written h1 ≡ h2, iff ∀v ∈ Vg : h1(v) = h2(v).

Two identical subgraph isomorphisms are treated as only one embedding be-

cause they refer to the same nodes. However, two equivalent subgraph isomor-

phisms may not be identical if the subgraph contains the same label for more than

one node; for example, subgraph A-B-A and input graph A-B-A-C. We define the

set of all embeddings which are not identical as below:

H(g,G) =
{
h |h(g) ⊆ G ∧ ∀h′ ∈ H(g,G) : h 6= h′ → ¬(h ≡ h′)

}
. (4.60)

The simplest evaluation predicate is defined by

ϕall(h, g,G) =

 true if h ∈ H(g,G)

false otherwise.
(4.61)
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Using this definition for the subgraph g in Figure 4.9(a) and the input graph G

in Figure 4.9(b), the result of match function is match(g,G, ϕall) = 7. LetG′ be an

image graph containing 7 instances of g independently. The matching function

using the predicate ϕall produces the same result for both cases. However, a

desirable matching function should produce a greater value for the input graph

G′. This example shows the importance of handling overlapping embeddings.

Fortunately, more sophisticated methods have been proposed in the graph mining

literature, that we will describe later.

Most of the graph mining methods use binary matching function which only

checks whether input graph contains an instance of given subgraph, or not. This

function can be obtained by an evaluation predicate, ϕbin, which returns true if

just one single embedding exists. However, we do not prefer binary matching

function because the image graphs we used in the experiments may contain a

structure belonging to another class, i.e. a single house in an instance of forest

image.

A method called the maximum independent set (MIS) support is proposed by

Kuramochi and Karypis for handling overlapping embeddings [25]. They intro-

duce the overlap graph for computing this support measure where each embed-

ding corresponds to a node and an edge is inserted between two nodes if they

are overlapping. Every embedding of the subgraph in Figure 4.9(a) is shown in

Figure 4.10(a) and the corresponding overlap graph can be seen in Figure 4.10(b).

The maximum independent set is found by removing minimum number of nodes

from this graph, that makes the remaining nodes independent (unconnected) an

the MIS support in a single graph is computed as the number of remaining nodes.

The maximum independent set of the overlap graph in Figure 4.10(b) has two

nodes: one node from the set {1, 2, 3} and one node from the set {5, 6, 7}. We

formally define this support measure as follows.

Definition 4.15 (Maximum independent set of embeddings).

Given a subgraph g, an input graph G, and an independence predicate ω which

takes a set of embeddings as an argument and returns true if its members are not
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Figure 4.10: In (a) The embeddings of the subgraph in Figure 4.9(a); in (b) the
corresponding overlap graph.

overlapping. The maximum independent set (MIS) of embeddings is defined as

HMIS(g,G) = arg max
H⊂H(g,G),
w(H) is true

|H| (4.62)

The evaluation predicate of the MIS support is given by

ϕMIS(h, g,G) =

 true if h ∈ HMIS(g,G)

false otherwise.
(4.63)

According to this predicate, the result of the matching function for Figure 4.9

is only 2, which is more realistic. The evaluation predicate which we use for graph

mining is an extension of ϕMIS. It also evaluates the subgraph g = (Vg, Eg, `g) in

terms of graph size with the predefined size limits: minimum number of nodes

vmin and maximum number of nodes vmax. We define the new evaluation predicate

as

ϕ(h, g,G) =

 true if vmax ≥ |Vg| ≥ vmin ∧ ϕMIS(h, g,G) is true

false otherwise.
(4.64)

This concludes our discussion of graph mining. Algorithm 3 summarizes the

graph mining procedure with the evaluation predicate ϕ. Sample subgraphs

mined by the algorithm using the predicate ϕ, and the embeddings of these

subgraphs in the image graphs are given in Figure 4.11 for three different classes.

The effects of parameters, thresholds and the computational complexity will be

discussed in Chapter 6.
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Figure 4.11: Images from top to down are original images from three different
classes, image graphs for 36 labels, embeddings of sample subgraphs found by the
mining algorithm and the sample subgraphs where the color and shape of a node
represents its label.



Chapter 5

Scene Classification

All models are wrong, but some are useful.

George E. P. Box

After finding the set of subgraphs S, we represent every image graph as a

subgraph histogram vector. These histogram vectors are used for model learning

for each class. Finally, the support vector machine (SVM) using these models

decides the best model for an unseen image. Another learning model which we use

is Latent Dirichlet Allocation (LDA). Given a subgraph histogram of an image,

LDA provides further representation of the image based on the theme distribution

in the image. This representation enables classification of images according to

their theme distributions and helps us to identify heterogeneous image content.

In the following sections we describe the image representation, classification of

images using SVM and theme discovery in the images using LDA.

5.1 Subgraph Histogram Representation

The subgraph histogram provides a powerful representation that is not as complex

as full graph models, and reduces the complexity of graph similarity computation.

The histogram is constructed using the support of each subgraph in the set S

64
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selected by graph mining. Each image graph G in the graph set G is transformed

into a histogram feature vector

x = (x1, . . . , xn)> (5.1)

where xi = match(gi, G, ϕ) and gi ∈ S for i = 1, . . . , n. By this way, images can

be classified in this feature space using statistical pattern recognition techniques.

5.2 Support Vector Machines

Support vector machines (SVM) are popular data classification technique. In this

section we give a brief description of the SVM and discuss only the parameters;

more details can be found in [13]. Given a training dataset with class labels for

each instance, SVM maps training vectors xi to a higher dimensional space. The

goal is to find a linear separating hyperplane with the maximal margin in this

higher dimensional space. We use a multi-class support vector machine with a

radial basis function kernel (RBF) for image classification. The kernel function

is

K(xi,xj) = e−γ ‖xi−xj‖
2

for γ > 0. (5.2)

The multi-class SVM is a combination of one-against-one class SVMs where

the output class is the one with the maximum number of votes [13].

We have only two SVM parameters to decide: The error parameter C and the

kernel parameter γ. A grid search on parameters C and γ is recommended by

libSVM [13] using cross-validation. Various values for the pair (C,γ) are tried and

the pair with the best cross-validation accuracy on training data is selected. The

values tried are selected from exponentially growing sequences to identify good

parameters. Additionally, we normalize each feature to the range [0,1] before

training the SVM.
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5.3 Latent Dirichlet Allocation

The dataset used in the experiments consists of homogeneous tiles cut from the

Antalya image shown in Figure 1.2 where the tile size is 250×250 pixels. We have

approximately 950 tiles excluding the sea tiles when we cut the Antalya image;

however, the dataset contains only 585 tiles. Almost 40 percent of land tiles are

not selected to the dataset due to heterogeneous content (or unclassified content).

Further classification of these tiles enables partitioning of the whole satellite image

into semantic class regions. For this purpose, we employ a generative probabilistic

model for theme discovery in these images.

Latent Dirichlet allocation (LDA) introduced by Blei et al. in is a generative

probabilistic model for collections of discrete data such as text corpora [7]. The

basic idea of LDA is that documents are represented as random mixtures over

latent topics, where each topic is characterized by a distribution over words.

LDA, which is originally developed from text modeling, is easily adapted to our

graph data by making analogies between document–image graph, word–subgraph,

corpus–image graph set and topic–theme. Likewise, LDA has been adapted to

computer vision by drawing an analogy between words and image patches in [28].

LDA is defined using the following terms:

� A subgraph is the basic unit of an image graph, defined to be an item from

a graph set indexed by {1, . . . , T}. The vth subgraph is represented by a

T -vector g such that gv = 1 and gu = 0 for u 6= v.

� An image graph is a set of N subgraphs indexed by G = {g1, . . . , gN}, where

gi is the ith subgraph in the set.

� An image graph set is a collection of M image graphs denoted by

G = {G1, . . . , GM}.

LDA assumes the following generative process for each image graph G in an

image graph set G:
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1. For each image graph, choose δ ∼ Dir(η) where δ is the parameter of a

multinomial distribution for choosing the themes and η is theK-dimensional

Dirichlet parameter. Total number of themes is assumed known and fixed

as K.

2. For each of the N subgraphs gi in the image graph

(a) Choose a theme zi ∼ Multinomial(δ) where zi is a K-dimensional unit

vector. zki = 1 indicates that the kth theme is selected.

(b) Choose a subgraph gi from p(gi | zi, β), a multinomial probability

conditioned on the theme zi and β is a K × T matrix where

βij = p(gj = 1 | zi = 1), is a fixed quantity for the graph set.

A K-dimensional Dirichlet random variable δ satisfies δi ≥ 0 and
∑K

i=1 δi = 1. It

has the following probability density:

p(δ | η) =
Γ
(∑K

i=1 ηi
)∏K

i=1 Γ(ηi)
δη1−1
i · · · δηK−1

K (5.3)

where the parameter η is a K-vector with components ηi > 0, and Γ(·) is the

Gamma function.

Given the parameters η and β, the joint distribution of a theme mixture δ, a

set of N themes Z = {z1, . . . , zN}, and an image graph G having N subgraphs

{g1, . . . , gN} is given by

p(δ, Z,G | η, β) = p(δ | η)
N∏
n=1

p(zn | δ) p(gn | zn, β) (5.4)

where p(zn | δ) is simply δi for the unique i such that zin = 1.

The LDA model is represented as a probabilistic graphical model in Figure 5.1.

The parameters η and β are the dataset-level parameters. They are assumed

to be sampled once for generating a graph set. The variable δ is graph-level

variable which is sampled once per image graph. Finally, the variables z and g

are subgraph-level parameters, sample once for each subgraph in an image graph.
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η δ z g

β

M
N

Figure 5.1: Graphical model representation of LDA. The boxes are plates repre-
senting replicates. The outer plate represents image graphs, while the inner plate
represents the repeated choice of themes and subgraphs within an image graph
[7].

In the context of text modeling, the topic probabilities provide an explicit

representation of a document [7]. Equivalently, we use the theme probabilities to

represent an image graph. To do so, we need to compute the posterior distribution

of the hidden variables given an image graph:

p(δ, Z |G, η, β) =
p(δ, Z,G | η, β)

p(G | η, β)
. (5.5)

Integrating (5.4) over δ and summing over z, we obtain the marginal distri-

bution of an image graph in terms of the model parameters:

p(G | η, β) =
Γ
(∑K

i=1 ηi
)∏K

i=1 Γ(ηi)

∫ ( K∏
i=1

δη1−1
i

)(
N∏
n=1

K∑
i=1

T∏
j=1

(δiβij)
gjn

)
dδ. (5.6)

Unfortunately, this distribution is intractable due to the coupling between δ

and β in the summation over latent themes [7]. However, a wide range of approx-

imate inference algorithms can be considered, including Laplace approximation,

variational approximation and MCMC method [7]. The solution proposed by Blei

et al. is approximating the distribution p(δ, Z |G, η, β) by a simplified graphical

model with free variational parameters as

q(δ, Z |ψ, φ) = q(δ |ψ)
N∏
n=1

q(zn |φn) (5.7)
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δ z

φ

M

N

Figure 5.2: Graphical model representation of the variational distribution used
to approximate the posterior in LDA [7].

where the Dirichlet parameter ψ and the multinomial parameters (φ1, . . . , φN)

are the free variational parameters. The next step is to find the values of the

variational parameters ψ and φ, which satisfy the best approximation as

(ψ∗, φ∗) = arg min
(ψ,φ)

KL
(
q(δ, Z |ψ, φ)

∥∥ p(δ, Z |G, η, β)
)
. (5.8)

Thus, the optimal values of the variational parameters are found by minimiz-

ing the Kullback-Leibler (KL) divergence between the variational distribution

and the true posterior p(δ, Z |G, η, β). The values are computed using the EM

algorithm; however, we do not include these steps to this thesis. The details of

the computation can be found in [7]. The computations show that the optimal

parameters (ψ∗, φ∗) are functions of the given graph G such that
(
ψ∗(G), φ∗(G)

)
.

Therefore, the theme probabilities of an unseen image graph can be computed in

the same manner. In addition, the values of the model parameters η and β are

estimated from the variational parameter values of all image graphs in the graph

set, iteratively. The graphical model of this variational distribution can be seen

in Figure 5.2.

Given a set of image graphs, we can estimate the model parameters η and

β using variational inference. The graph-level variable δ can be used for graph

representation. It is a K-dimensional vector where the ith component equals to

the probability p(zi | δ,G) for the given graph G. The variational method finds the

optimal Dirichlet parameter ψ∗(G) of the distribution that generates the variable
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δ for the given graph G. Therefore, normalizing the K-dimensional Dirichlet

parameter gives the expected value of the theme distribution which can be used

for graph representation.

After training the LDA model on homogeneous tiles for a defined number

of themes, we compute the theme distribution vectors of all tiles in the whole

satellite image using variational inference. Finally, the theme probabilities of

tiles are used for partitioning the whole image into semantic regions.



Chapter 6

Experimental Results

Where is the ‘any’ key?

Homer Simpson – in response to

the message “press any key”

In this chapter, we present the results of the experiments conducted for the

proposed method in comparison to the bag-of-words model. The dataset used in

the experiments is previously described in Section 1.3. In the following sections

we first describe the experimental setup and then demonstrate the experimental

results.

6.1 Experimental Setup

We explained the proposed method for image classification in the previous three

chapters. The following section gives the values for the parameters of the method

and the external softwares used as a part of experiments. We conduct experi-

ments also for the bag-of-words model in the same dataset. For the bag-of-words

model we extract the histogram vector of the node labels computed from indi-

vidual MSERs for each image and then the same classification procedure given

in Chapter 5 is applied.

71
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6.1.1 Graph Construction Parameters

The transformation process has three parameter sets: The MSER parameter sets

Ωlow, Ωhigh and the parameter set for the number of labels Υ. We determine

the MSER parameters experimentally as Ωhigh = (10, 60, 5000, 0.4, 1) and

Ωlow = (5, 35, 1000, 4, 1). Also, the ellipse expanding parameters in (3.6) and (3.7)

are experimentally set to r2
1 = 5 and r2

2 = 20. The MSER algorithm is applied

to the whole remote sensing image with these parameters and the features are

extracted from the image. Then, the node labels are determined by the k-means

algorithm with Υ = (ksd, ksb, kud, kub). We set ksd and ksb to equal values; and

similarly kud and kub. The number of highly stable MSERs is less than the

number of less stable ones. Therefore, we choose the number of labels for less

stable MSERs as twice the number of labels for highly stable ones. Hence, we

use the total number of labels denoted by N` instead of the set Υ. For example,

we say N` = 36 for Υ = (6, 6, 12, 12). The parameter value of N` is selected from

the set {18, 26, 36, 54, 71} in the experiments. Next, the graph transformed from

the whole image are cut into tiles and every homogeneous tile is labeled by one

of the eight semantic classes. Finally, these tiles are divided into two sets which

have (almost) same number of tiles for each class. One of them which has 295

images is used for model training and the other set containing 290 images is used

for testing. The external software used in this section is VLFeat [43] for not only

the MSER algorithm but also the k-means++ algorithm.

6.1.2 Graph Mining Parameters

The mining algorithm is based on the evaluation predicate. We use the predicate

ϕ in (4.64) for graph mining. The graph mining algorithm has three steps. The

parameter of the first step is the support threshold θ supp
c for each class c ∈ C.

A global threshold for all classes is not reasonable because the size of dataset

Dc varies from one class to another. A threshold for freq(π,D) may be applied;

however, the density of MSERs also differs between classes. We choose three

different threshold values for each class in order to simulate the effects of high,
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medium and low thresholds which allow small, medium and large number of

subgraphs to pass to the next filer, respectively. The desired size of Fc for high,

medium and low thresholds are determined as 200, 500 and 800, respectively.

We denote this number by Nθ. To choose the support thresholds accordingly, we

rank all subgraphs in order of support and select the support value of the Nθth

subgraph as the threshold θ supp
c for each class. The same procedure is applied

for the correlation threshold θ cor
c . Note that the correlation thresholds are chosen

from the ranking of all subgraphs, not only the frequent ones. In the experiments,

we use the same parameter Nθ for the selection of both thresholds in a single run

of the algorithm. The last significant parameter of the algorithm is the number

Ns of subgraphs selected for the set Sc for each class. We have eight classes, so

each image is represented by a 8 × Ns-dimensional subgraph histogram vector.

The domain of the parameter Ns is {1, 2, . . . , 20} in the experiments.

Addition to the parameters N`, Nθ and Ns, there are some less important pa-

rameters: Subgraph size limits vmin and vmax in (4.64), the number of components

in the Poisson mixtures m in (4.11), and the regularization constant ξ in (4.31).

We mine subgraphs which have at least two nodes vmin = 2, and not more than

five nodes vmax = 5. The upper limit is used for reducing the computational com-

plexity of frequent subgraph mining and the lower limit is set for differentiating

subgraphs from the visual words of individual nodes (MSERs). The number of

components in the Poisson mixtures is set to m = 5 for all subgraphs and the

parameter ξ is chosen differently for each class as ξc = ln(2) / freq(π,Dc) because

the distance which corresponds to the average match in the dataset becomes equal

to 0.5 by

d′
(
freq(π,Dc)

)
= 1− e−ξc freq(π,Dc) = 0.5. (6.1)

The external software of this section is the Molecular Substructure Miner (MoSS)

implemented by Borgelt [8] for mining frequent subgraphs.
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6.1.3 Classifier Parameters

As mentioned in the previous chapter, there are two parameters of the SVM

classifiers: C and γ. We set these parameters using grid search on 5-fold cross-

validation with several parameter pairs from exponentially growing sequences.

The domains are C ∈
{

2−3, 2−2, . . . , 25
}

and γ ∈
{

2−5, 2−4, . . . , 22
}

. The param-

eter pair with the highest classification accuracy is selected as SVM parameters.

If more than one pair has the same classification accuracy, the pair with the

maximum-margin is selected. On the other hand, LDA has only one parameter:

The number of themes K. The LDA model is learned from the training graph

set and this model is used for inference of variational parameters for all tiles in

the Antalya image.

6.2 Classification Results

The experiments are performed on an Ikonos image of Antalya, Turkey given in

Figure 1.2. The tiles (250 × 250 pixel size) cut from this image are used in the

classification experiments for eight semantic classes:

(a) dense residential areas with large buildings,

(b) dense residential areas with small buildings,

(c) dense residential areas with trees,

(d) sparse residential areas,

(e) greenhouses,

(f) orchards,

(g) forests, and

(h) fields.
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Table 6.1: The number of images in the training and testing datasets for each
class. Class names are in the text.

class #training #testing total

(a) 40 39 79

(b) 35 35 70

(c) 18 17 35

(d) 24 24 48

(e) 17 17 34

(f) 82 81 163

(g) 38 37 75

(h) 41 40 81

total 295 290 585

The number of images in the training and testing datasets for each class are given

in Table 6.1. The experiments are repeated on different parameter combinations

in order to demonstrate the effects of parameters on classification performance.

The distribution of some MSER clusters over the whole image is given in

Figures 6.1 and 6.2. The instances of the MSER clusters in these images are

concentrated over a unique compound structure type. This shows the success of

feature extraction step. In other words, the features extracted from the MSERs

and their surroundings are so adequate to capture the local image content that

we can distinguish the scene types by monitoring the locations in which they

are detected. This situation is the main reason for the high performance of the

bag-of-words model.

The classification accuracy of the graph mining algorithm for all parameter

combinations in the experiments is shown in Table 6.2. The accuracy is computed

for the test dataset, as the ratio of correctly classified images to the total number

images. Note that the number of images that belong to one class varies from

17 (greenhouses) to 81 (orchards) in the test dataset of 290 images of 8 classes.

The best classification accuracy is 92.069 percent, achieved by the parameter set

(N`, Nθ, Ns) = (36, 200, 9).
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Figure 6.1: Three clusters of stable dark MSERs are drawn with different colors
at ellipse centers for N` = 36. Yellow, green and magenta points are concentrated
on dense residential areas with large buildings, dense residential areas with small
buildings and orchards, respectively.
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Figure 6.2: Four clusters of different type MSERs are drawn with different colors
at ellipse centers for N` = 36. Yellow, green, cyan and magenta points are
concentrated on sea, forests, stream bed/clouds and dense residential areas with
trees, respectively.
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Figure 6.3: Plot of classification accuracy of the graph mining algorithm for five
different number of labels over the number of subgraphs per class. The lines are
drawn by averaging the accuracy values for the parameters Nθ ∈ {200, 500, 800}.

Figure 6.3 demonstrates the effects of N` and Ns. Given these parame-

ters, the line is drawn by averaging the classification accuracy over the set

Nθ ∈ {200, 500, 800}. If we start from Ns = 1 and increase the number of

subgraphs selected for the set S, i.e. the dimensionality of the feature space, the

classification accuracy also increases until about Ns = 8 or 10 for all values of

N`. However, after this point the classification accuracy decreases dramatically

as expected because of the curse of dimensionality. A similar behavior is observed

for the parameter N`. The best accuracy results are obtained when the number of

labels is 36. High number of node labels such as 72 causes a significant decrease

in subgraph frequency which leads to a fall in the accuracy. On the other hand,

small number of node labels like 18 increases the subgraph frequency but reduces

the correlation between subgraphs and classes. As a result, the confusion caused

by less correlated subgraphs results in low classification accuracy. To sum up,

every number of node labels entails trade-offs between frequency and correlation.

Finding the optimal number of node labels in terms of classification accuracy

requires experiments on the dataset with a range of N` values.
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Besides classification performance, the number of node labels plays an im-

portant role in computational complexity. The crucial part of the graph mining

algorithm with respect to the computational complexity is the frequent subgraph

mining. The computational cost depends heavily on the number of overlapping

embeddings because the MIS support solves an optimization problem for every

overlapping embeddings. Small number of labels increases the number of over-

lapping embeddings and some classes, especially natural lands such as forest,

fields and orchards tend to produce overlapping embeddings more than man-

made structures like residential areas.

Figure 6.4 demonstrates the effects of Nθ and Ns. Given these parame-

ters, the line is drawn by averaging the classification accuracy over the set

N` ∈ {18, 26, 36, 54, 72}. The parameter Ns, namely the number of subgraphs

selected per class represents similar property as in Figure 6.3. On the other

hand, a decrease in the thresholds θ supp
c and θ cor

c (inversely proportional to Nθ)

causes the classification accuracy to decrease. The analysis of this case is harder

than the previous. One possible explanation is that the set S contains strongly

correlated but less frequent subgraphs for low thresholds. The last part of the

mining algorithm uses the correlation function as a significance measure. There-

fore, the selected subgraphs may be still highly correlated despite the low corre-

lation threshold but they may be less frequent. For example, assume a pattern

π which is found once or twice in almost all examples of class c but not found in

other examples. The pattern π is considered to be a correlated pattern but it is

not frequent and may not be found in test examples. In summary, the last part of

the mining algorithm compensates a lower correlation threshold by selecting the

most correlated and not redundant pattern. Although the correlation measure

and pattern support are somewhat related (see Theorem 4.1), a lower threshold

for the subgraph support may not be fully recovered by the other parts. Conse-

quently, the selection of support threshold should be done carefully, that allows a

sufficient number of subgraphs to satisfy the frequency criterion considering the

redundancy between patterns.

The classification performance of the bag-of-words model in comparison to

the graph mining algorithm can be seen in Table 6.3. As seen in the table, the
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Figure 6.4: Plot of classification accuracy of the graph mining algorithm for three
different Nθ values over the number of subgraphs per class. The lines are drawn
by averaging the accuracy values for the parameters N` ∈ {18, 26, 36, 54, 72}.

frequency of visual words in the bag-of-words model is less affected from the num-

ber of node labels because the graph mining method seek structural elements in

the images. On the hand, bag-of-words model fails to classify images for small

number of node labels. The graph mining is less affected from the confusion using

the spatial relationships between local image patches. The best classification ac-

curacies of both methods are almost same. However, further improvement cannot

be obtained because of the intrinsic properties of the dataset. The small tile size

due to the heterogeneous content of the satellite image limits the frequency of the

subgraphs and the method suffers from the low subgraph support. Using bigger

tiles might improve the performance of the graph mining method.

The confusion matrices of the graph mining algorithm and the bag-of-words

models for the best parameter sets are presented in Figures 6.5 and 6.6, respec-

tively. The most confused class in both matrices is greenhouses. It is about

another problem of the dataset. Greenhouses are naturally located near sparse

residential areas (villages) and orchards. Therefore, the images of greenhouses
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Table 6.3: Classification accuracy of the bag-of-word model and the mining algo-
rithm, in percentage terms, for different number of words/labels.

#Labels (N`) BoW Accuracy Max. Mining Accuracy

18 79.310 88.966 (Ns = 10, Nθ = 500)

26 92.414 91.034 (Ns = 7, Nθ = 200)

36 91.035 92.069 (Ns = 9, Nθ = 200)

54 91.035 88.621 (Ns = 9, Nθ = 200)

72 91.724 86.897 (Ns = 10, Nθ = 200)

in the dataset are not completely homogeneous and contain structures belonging

to other classes as seen in Figure 6.7. Our graph mining algorithm essentially

handles such problems by mining class correlated subgraphs. It seeks a set of

subgraphs which are commonly found among the examples of the class and some

images having other structures do not constitute an important problem for the

class. However, greenhouses are located sparsely in the Antalya image and almost

all greenhouse images contain structures of orchards or sparse residential areas.

As a result, the mining algorithm treats those structures as if they are correlated

with the greenhouses class. This explains the reason for the relatively lower per-

formance on the greenhouses and puts the obstacles in the way of improving the

general performance of the mining algorithm. Sample images for each class are

shown in Figure 6.7. They are grouped according to their classification result by

the graph mining algorithm.

Finally, we apply the SVM model learned from the training set to every tile

in the Antalya image. The classification result is drawn in Figure 6.8. Similarly,

we discover themes in the Antalya image using the LDA model whose parameters

are estimated from the training dataset for 12 themes. The set of subgraphs used

in the LDA model is the set S which is found by the graph mining algorithm.

The LDA model gives insight into distributions of themes over the whole image.

Hence, heterogeneous tiles contents are analyzed in a better manner. However,

presenting all topics distribution in this study for the Antalya image is a difficult

task. Therefore, we combine this distributions into one image in Figure 6.9 where

each color represents a region where the corresponding theme dominates other
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Figure 6.5: The confusion matrix of the graph mining algorithm using the param-
eters N` = 36, Nθ = 200 and Ns = 9. Class names are given in short: sparse and
dense are used for sparse and dense residential areas, respectively. Also, large
and small mean large and small buildings, respectively.
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Figure 6.6: The confusion matrix of the bag-of-words model for 26 labels. Class
names are given in short: sparse and dense are used for sparse and dense resi-
dential areas, respectively. Also, large and small mean large and small buildings,
respectively.
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(a) Correctly classified images (b) Misclassified images

Figure 6.7: Sample images from the dataset. The images at the left are correctly
classified by the graph mining algorithm while the images at right-hand side are
misclassified using the parameters N` = 36, Nθ = 200 and Ns = 9. The image
classes from top to down are in the order: dense residential areas with large
buildings, dense residential areas with small buildings, dense residential areas
with trees, sparse residential areas, greenhouses, orchards, forests and fields.
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Figure 6.8: The classification of all tiles except sea using the SVM learned from
the training set for the parameters N` = 36, Nθ = 200 and Ns = 9. Each color
represents a unique class.

themes. The probability distributions of the most dominating 6 themes found

by the LDA model trained for 16 themes are drawn in Figure 6.10. The further

extensions of the LDA model remain as the future work for this study such as

theme localization by analyzing the locations where the correlated subgraphs are

found and testing with the model with other subgraph sets.
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Figure 6.9: Every tile is labeled by a unique color which indicates the correspond-
ing theme that dominates the other themes in that tile. The theme distributions
are inferred from the LDA model for 12 themes. The subgraph set is the one
mined in the previous experiments for the best parameters.
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Figure 6.10: The most dominating 6 themes are shown, found by the LDA model
trained for 16 themes. The intensity of red color represents the probability of the
theme in an individual tile.



Chapter 7

Conclusions and Future Work

It would seem that perfection is attained

not when there is nothing more to add,

but when there is nothing left to take away.

“Wind, Sand and Stars” – Antoine de Saint-Exupéry

7.1 Conclusions

We emphasized the importance of high-level understanding of the image content

through compound structures and we discussed the challenges of detecting com-

pound structures. Accordingly, we described a new image content representation

using the histogram of a subgraph set for classifying complex scenes such as dense

and sparse urban areas. As the first step of this method, we transformed images

to graphs where the nodes store local image content and the edges encode spatial

information. We proposed a graph construction method where the patches, en-

coded by the graph nodes, are detected using maximally extremal stable regions

and discriminative information about these regions are obtained by extracting

features from these regions in relation to their surroundings. The features were

quantized to form a codebook of local information that determined the node la-

bels and the neighborhood relation between local patches were found from the

88
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Voronoi tessellations of the patches.

In the second step of the method, we selected the subgraphs which are used

in the histogram representation of images where the subgraphs encapsulate the

local patches and their spatial arrangements within a specific structure. We

described a graph mining algorithm to find the set of frequent and discriminative

subgraphs which also has low redundancy. The algorithm first mines the frequent

subgraphs in the image graph set. Then, it selects the discriminative subgraphs

among the frequent ones with respect to the correlation between the subgraphs

and the classes. We introduced a novel algorithm for extracting class-correlated

patterns using the probabilistic model of subgraph frequency in an individual

graph. Finally, the redundancy between the subgraphs in the set was resolved by

choosing the most significant subgraphs considering the distances between them.

The third step of the method is the model learning from the vector space rep-

resentations of the images. A multi-class support vector machine was employed

for classifying the images. Furthermore, the latent Dirichlet allocation model

was used for further classification of images. The LDA model provides the theme

distribution representation of images computed from the subgraph histograms.

Themes provide a better understanding of the images having heterogeneous con-

tent.

In experimental work, we evaluated the performance of the graph mining al-

gorithm in image classification compared to the bag-of-words model. The dataset

consists of tiles cut from an Ikonos image of Antalya image and each tile is labeled

by one of the eight high-level semantic scene types. The classification accuracy

of the graph mining algorithm shows the effectiveness of the proposed method

in classification of complex scene types. We observed and discussed the effects

of the parameters on the classification accuracy. We concluded that the graph

mining algorithm is capable of discriminating images of different scene types suc-

cessfully. Furthermore, the LDA model manages to discover interesting themes

in the whole satellite image.
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7.2 Future Work

The proposed image representation can be easily adapted to other application

areas of computer vision. To illustrate, the application of subgraph histogram

representation can be extended to image retrieval by defining a distance measure

between subgraph histograms or borrowing a distance definition from the infor-

mation retrieval literature. Given an input image, the most similar images in the

dataset are the closest ones according to the distance function.

The LDA model offers new applications of the proposed image representation.

Given a given graph set and a subgraph set, the LDA model finds the subgraph-

theme probabilities β. A subgraph that is highly correlated with a theme can

be used for localizing the theme distribution in a heterogeneous content. This

enables high-level partitioning of heterogeneous images. Another application of

the LDA model is unsupervised partitioning of the whole satellite image using

subgraph histograms in case the labeled data are not available or the scene types

are unknown. In such cases, the subgraph set contains all subgraphs generated

by the graph language for a fixed-size. Given the number of themes, the LDA

tries to discover themes from the whole image using the occurrence numbers of

all subgraphs in tiles.

Finally, the set of subgraphs selected by the graph mining algorithm from an

Ikonos image of Antalya can be used for classification of images cut from another

satellite image which is retrieved from another satellite in a different spatial-

resolution, by the help of a mapping function. The function maps the features

extracted from the MSERs of the second image to the node labels determined

for the first image. The parameters of the graph construction method should be

adjusted for the spatial resolution of the second image, then the mapping function

determines, after normalization, the closest cluster center of the first image to the

features of an MSER in the second image.
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