
A Bayesian Nonparametric Approach to
Integrative Genomics for Cancer Subgroup Discovery

Bahadir Ozdemir
Department of Computer Science

University of Maryland
College Park, MD, USA

Wael Abd-Almageed
Information Sciences Institute

University of Southern California
Arlington, VA, USA

Stephanie Roessler
Institute of Pathology

Heidelberg University Hospital
Heidelberg, Germany

Xin Wei Wang
Center for Cancer Research

National Cancer Institute
Bethesda, MD, USA

Abstract

Systematic integration of multiple omics data is a promising approach to iden-
tify cancer subgroups. In this project, miRNA and gene expression profiles were
jointly analyzed for better defined molecular tumor subtypes by a Bayesian non-
parametric method. Kaplan-Meier survival analysis showed that the subgroups
identified by the proposed method on two hepatocellular carcinoma cohorts have
different survival characteristics. Our proposal is easily extensible to other omics
data types such as DNA methylation data and copy number alterations.

1 Introduction

The high tumor heterogeneity in hepatocellular carcinoma (HCC) is the major obstacle in the de-
velopment of new molecularly targeted therapies. Integrated analysis of multiple genome types
has become very popular to identify driving regulatory networks for certain types of cancer as the
amount of available genomic data increases. Defining molecular tumor subtypes is one of the key
challenges in integrative genomics. In our previous work [1], we propose a framework to identify
miRNA-gene networks associated with HCC using graph mining and utilizing such networks for
patient stratification in HCC using a mixture model. However, the mixture model for clustering
patients dismisses the interactions between miRNAs and their target genes. In addition, a predefined
number of patient clusters is required to be specified as a parameter of that model, which is quite
restrictive. Here, we propose a Bayesian nonparametric model that automatically decides the num-
ber of cancer subgroups in a cohort from miRNA and gene expression profiles. Our proposed model
also takes the interactions between miRNAs and their target genes into account.

Integrated analysis of omics data has gained great interest in recent years. Quantification of mRNA-
miRNA interactions has been studied using a LASSO model with L1-regulatization in [2]; however,
the method considers that all samples come from a homogenous cohort. Correspondence Latent
Dirichlet Allocation was used for discovery of miRNA-mRNA regulatory networks in [3] and [4].
Finally, a variational Bayesian method was employed for predicting target genes of miRNAs from
sequence and expression data in [5]. Unlike previous studies, our method is aiming to discover
subgroups in cancer cohorts via patient clustering from microarray data. In our method, we use
verified miRNA-mRNA targeting relationships and liver cancer associated genes and miRNAs.

The rest of the paper is organized as follows: Section 2 describes the proposed integrative proce-
dure for cancer subgroup discovery. Survival analysis on the subgroups identified by the method is
presented in Section 3, and Section 4 provides conclusions.
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2 Our Approach

2.1 Mathematical Model

In our clustering method, we employ the first part of the iSubgraph algorithm for verifying target
genes of miRNAs and selecting significant genes and miRNAs for HCC [1]. Suppose that the
iSubgraph algorithm identifies G genes and M miRNAs associated with HCC, then Pij = ±1
if the ith gene is a target of the jth miRNA and Pij = 0 otherwise. Pij = +1 indicates positively
correlated targeting relationship and Pij = −1 indicates negative correlation.

We follow the linear model in [2] for the function of miRNAs in gene regulation. Let vectors un =
[un,1, un,2, . . . , un,G]T and vn = [vn,1, vn,2, . . . , vn,M ]T be the logarithms of expression levels of
genes and miRNAs in the nth patient, respectively. Then, the relationship between expression levels
is represented by the following linear model:

un,i = µu
i +

M∑
j=1

Pijβijvn,j + εi for i = 1, . . . , G and n = 1, . . . , N (1)

where εi ∼ N
(
0, (σu

i )2
)

is an error term, µu
i is the expected expression level of the ith gene in

the absence of miRNAs and βij ≥ 0 denotes the amount of regulation for each miRNA-gene pair.
The gene and miRNA expression levels of the nth patient can be combined in a single vector for
simplicity of the model as xn = [un,1, . . . , un,G, vn,1, . . . , vn,M ]T . Then, we define a new vector
yn that contains expression levels of genes and miRNAs in the absence of regulation from miRNAs
as follows:

yn = Bxn, B =

(
IG −β
0 IM

)
(2)

where Id is a d×d identity matrix and β is a G×M matrix that contains regulation parameters βij .
Note that B is invertible. Assuming that the expression level of each miRNA also follows a normal
distribution, we can rewrite the model as yn ∼ N (µ,Σ) for n = 1, . . . , N where the covariance ma-
trix Σ is diagonal. If there exist multiple subgroups, the model becomes yn ∼

∑K
k=1 wkN (µk,Σ)

where wk = p(zn = k) is a mixing proportion and zn denotes the subgroup of the nth patient,
assuming Σ and β are shared by all subgroups.

We define a Bayesian framework for patient stratification by placing priors over wk, βij , µk and Σ.
To obtain a flexible prior, we take the infinite limit (K →∞) so that the number of exact subgroups
present in a cohort becomes a variable to be determined at inference time. As a result, we have the
infinite Gaussian mixture model together with a linear model for miRNA-gene interactions [6].

The infinite set of mixing proportions wk is constructed from a stick-breaking prior (the Dirichlet
process) as follows [7]:

wk = w′k

k−1∏
u=1

(1− w′u) (3)

where w′u ∼ Beta(1, α) is a proportion of the stick for all u and α is a dispersion parameter. Note
that the proportions wk sum to 1 with probability 1. Let the mean expression levels µk be a random
vector from a multivariate normal distribution N (µ0,Σ0). We put an inverse-gamma prior on the
variance parameter of each gene and miRNA. Let τi be the precision parameter for the ith element
of yn i.e. τi = Σ−1ii , then we say each τi comes from Gamma(t1, t2Σ0,ii) where t1 and t2 are
hyperparameters1. Lastly, an exponential prior is placed over each regulation parameter βij because
these variables should be small since the regulation of miRNAs on genes is limited. If Pij = 0, then
βij must be fixed to zero. The regulation of a miRNA must be non-negative if Pij = +1 and non-
positive if Pij = −1. For simplicity, we define a new variable β′ij = Pijβij such that β′ij ≥ 0. All
these conditions are combined in β′ij ∼ |Pij |Exponential(λ)+(1−|Pij |) δ0 where λ is a parameter
that controls the regulation amount.

1Notation: We use shape and rate (inverse scale) parameters for Gamma distribution as Gamma(α, β).
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Finally, we obtain the following model (Figure 1):

yn | zn,µ1, . . . ,µ∞,Σ ∼ N (µzn ,Σ)

zn | w1, . . . , w∞ ∼ Multinomial(w1, . . . , w∞)

β′ij | Pij , λ ∼ |Pij |Exponential(λ) + (1− |Pij |) δ0
µk | µ0,Σ0 ∼ N (µ0,Σ0)

τi | t1, t2,Σ0 ∼ Gamma
(
t1, t2Σ0,ii

)
w1, . . . , w∞ | α ∼ Stick(1, α)

(4)

where the observed data consists of expression levels xn = B−1yn. Therefore, we might replace
the first line of the model with xn | zn,β,µ1, . . . ,µ∞,Σ ∼ N

(
B−1µzn ,B

−1ΣB−T
)
.

Figure 1: Graphical model for the integrative approach where circles indicate random variables,
shaded circles denote observed values, and the blue square boxes are hyperparameters.

2.2 Inference by Gibbs Sampling

The posterior for zn is not in closed form because of coupling between regulation parameters and the
Dirichlet prior. Therefore, we employ a blocked Gibbs sampling procedure as [8] using a truncated
Dirichlet process (TDP) in which the number of subgroups K is chosen large relative to the number
patients N . The blocked Gibbs sampler iterates between the following six steps:

1. For n ∈ {1, . . . , N}, independently sample zn, the subgroup of the nth patient, from

p(zn = k |yn,w,µk,Σ) ∝ wk ×N (yn |µk,Σ).

2. For k ∈ {1, . . . ,K}, independently sample w′k, the proportion of the stick, from
Beta(γk,1, γk,2) where

γk,1 = 1 +

N∑
n=1

1[zn = k] and γk,2 = α+

K∑
i=k+1

N∑
n=1

1[zn = i];

then update the mixing proportion wk ← w′k
∏k−1

i=1 (1− w′k).

3. For k ∈ {1, . . . ,K}, independently sample µk, mean expression levels of the kth subgroup,
from N (µ′k,Σ

′
k) where

Σ′k =

(
Σ−10 +

N∑
n=1

1[zn = k] Σ−1
)−1

and µ′k = Σ′k

(
Σ0µ0+

N∑
n=1

1[zn = k] Σ−1yn

)
.
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4. For i ∈ {1, . . . , G+M}, independently sample τi, precision parameter for the ith element,
from Gamma(φi,1, φi,2) where

φi,1 = t1 +
N

2
and φi,2 = t2Σ0,ii +

1

2

N∑
n=1

(yn,i − µzn,i)
2;

then update the variance Σii ← τ−1i .
5. For i ∈ {1, . . . , G} and j ∈ {1, . . . ,M}, independently sample βij , regulation parameter

of the jth miRNA on the ith gene, as follows:
(a) If Pij = 0, do nothing (keep βij = 0),
(b) If Pij = ±1, sample β′ij from a truncated normal distribution N (mij , s

2
ij)1[β′ij ≥ 0]

where

mij =

( N∑
n=1

τiv
2
n,j

)−1( N∑
n=1

(
µu
zn,i +

∑
j′ 6=j

βij′vn,k − un,i
)
τivn,j − Pijλ

)
,

sij =

( N∑
n=1

τiv
2
n,j

)− 1
2

;

then update βij ← Pijβ
′
ij . One can sample from a truncated normal distributionq using

the inverse of the normal cumulative distribution function.
6. For n ∈ {1, . . . , N} update yn, the expression levels in the absence of regulation, as in (2).

3 Experimental Results

We applied our approach on the same cohorts with survival data as [1], namely the Liver Cancer
Institute (LCI) cohort and the Laboratory of Experimental Carcinogenesis (LEC) cohort. After
applying the first part of the iSubgraph algorithm, the microarray data of the LCI cohort has 384
genes and 49 miRNAs for 196 patients. The microarray data of the LEC cohort has only 346 genes
for 113 patients. The model used for the LEC cohort does not have regulation parameters (M = 0).
Thus, it is basically a Dirichlet process Gaussian mixture model.

The hyperparameters µ0 and Σ0 were set to sample average and sample covariance matrix computed
from the data, respectively. We set t1 = N , t2 = 4 and λ = 5. The truncation level was set to
K = 1000. The dispersion parameter α was initialized to 1 and determined by adding a Metropolis
step to the Gibbs sampler. After 100 iterations, the subgroup assignments converged to 3 clusters for
the LCI cohort. The Gibbs sampler with the same setting converged to 2 clusters on the LEC cohort.
We used the Kaplan-Meier analysis for survival characteristics of subgroups (Figure 2). For both
cohorts, the difference between survival characteristics of the subgroups identified by our method is
statistically significant by the Cox-Mantel log-rank test (p-value ≤ 0.01).

LCI Cohort LEC Cohort

Figure 2: Kaplan-Meier plots for the subgroups identified by the method on two cohorts.

Our approach yielded similar results on the LEC cohort in comparison to the mixture model in [1].
However, our nonparametric method suggests that there exist three subgroup in the LCI cohort while
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the mixture model identifies two subgroups with respect to the Bayesian information criteria. The
p-value of our method on the LCI cohort for three subgroups is less than that of the mixture model
(p-value = 0.028).

4 Conclusions

Here, we presented a Bayesian nonparametric method for integrative genomics. We used gene and
miRNA expression profiles with the patterns of miRNA-gene regulations for patient stratification
of two HCC cohort. Our Bayesian nonparametric approach effectively identified HCC subgroups
with different survival characteristics. The advantages of this method are that it does not require a
predefined number of clusters and it offers an easy extension for other genomics types such as DNA
methylation or histone modification. New genomic data can be attached to the graphical model by
adding new variable nodes and connecting them to other nodes which they have a relationship. In
addition, the stability of class predictions might be improved by stochastic variational inference.
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